{
"cells": [
{
"cell_type": "markdown",
"id": "f75aa53d",
"metadata": {},
"source": [
"# Tema 7\n",
"\n",
"\n",
"\n",
"**Problema 7.1**\n",
"\n",
"La localización de un cambio de carga en un lazo de control puede afectar a la respuesta del sistema. En el diagrama de bloques adjunto se produce un cambio en escalón unidad en la posición 1 ó 2."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f4857de6",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAACNCAYAAACKYRE4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZXElEQVR4nO3de7RcZXnH8e8DiYRrKCDBtnJVixEkIQoCSgCRq4JdolZbKwiIchNFoXVZerFYtbBUBFRADFiKolBBLkFAE5Ei0SQQBBYqCEQBJVKCIUAS8vSP5511NnNmzpnbnndmn99nrVnnzJ6997zvnnf2PPu9bXN3RERERHJYJ3cCREREZOJSICIiIiLZKBARERGRbBSIiIiISDYKRERERCQbBSIiIiKSjQIRERERyUaBiIiIiGSjQERERESyUSAiIiIi2SgQEemSmb3JzJabmdUtv8XMTsuVLhkeKkMykSkQEeneDOBOH33jphnA4r6nRobRDFSGZIJSICLSvZnU/ViY2bbAZvXLRZpQGZIJS4GISPdmAIvqls0Efuvuy/qfHBlCM1AZkglKgYhIF8xsMvAaRl+17gosMrOpZrbAzFaY2U79T6EMuhbK0B5mdruZzTezy9P6IpWhQESkO69Of++rW74b8DNgJXAo8N1+JkqGynhl6GFgP3efDTwIHN7HtImUToGISHemAc+6+5raAjPbApgNXOPuq939iWypk2EwXhl61N2fTS+tAdZmSKNIaRSIiHTnbmA9MzvWzNY3s1cBlwPXuvuSzGmT4dBSGTKz7YCDgWszpVOkFApERLrg7o8D7wJOBp4E5hKdDo/MmCwZIq2UITPbBLgEeJ+7r8qQTJHS2Ohh6yLSa2Y2BzjL3X+ROy0yXMxsEnA1cLa7/zB3ekR6TTUiIiUzs+uBA4ALzezIzMmR4fMeYHfgDDObZ2bvzp0gkV5SjYiIiIhkoxoRERERyUaBiIiIiGSjQERERESyUSAi0mNmdp2ZXZc7HTLcVI5kolBnVZEeMzMHcHfLnRYZXipHMlGoRkRERESyUSAiIiIi2SgQERERkWwUiIiIiEg2CkREREQkGwUiIiIiko0CEREREclGgYiIiIhko0BEREREslEgIiIiItkoEBEREZFsFIiIiIhINgpEREREJBsFIiIiIpKNAhERERHJRoGIiIiIZKNARERERLJRICIiIiLZKBARERGRbBSIiJTEzKbmToMMJzN7Se40iPSLAhGR8pyaOwEytKbnToBIvygQESnPB3MnQIbWK3InQKRfJuVOgEgVmNkkYIO6xdPMbJP0/zPu/kKfkyVDxsw2BgzYqLCsVoZWuftzWRImUiLViIj0xlRgGbC8bvly4HFgw76nSIbRZUSZ+UZh2fL0eGeWFImUTIGISA+4+x+Ba5q8fKW7P93P9MjQmtNk+Qrgqj6mQ6Rv1DRTEWZ2HXBI7nSU5Hp3PzR3IlowB3hHk+UDT2VoIFwL/BHYvG75Fe7+TIb0tK3C5WhYytDQMXfPnQbpATOr9Afp7pY7DeMxs8nAUmBaYfFSYFt3X5snVa1TGRoMZnYOcFLd4r3d/dYc6WlXlcvRsJShYaMakYqp2hdlmE5q7r7azC4DPlZYfOkwBCFFKkPZXcKLA5EHgZ9kSkvHqlSOhrAMDRX1ERHprUvGeS4ynkXALwrP57iqrqXCJnSNSBpyuS+wOzALeC2wCRGgPQvcDywEfg7MVYdDacTMXk2Uo1npUbMauMLMFhLl6BZ3/2WGJMqAM7NNgYOI8vM64OWFl482s5nEeeinwHwNBZcqmZB9RMxsGnAMcBwv/sKP5Rngm8D57n53WWnrVK3qsErVoTC4+Ur9Qd4OnADMbmPTW4DzgWvcfU0JSevYoB7rbg1yvsxsBlGG3svoeWiaeQj4KnCxuz9RTso6N8jHu1NVzNMgmVCBiJmtA3wI+Dwj8zr8muipvhBYDDwBOLAxsBNxhbIv8KbCrr4KnObuf+pPysdX1S/KIObLzGYRI2F2SotWAFcDC4hy9BvgeWA9YHuiDO0OHM7Ij81i4Eh3X9K3hI9jEI91LwxivlINyNnABwqL5wHziTL0C6JcGbAlsCtRjt4GbJfW/xPRH+nrg9R0M4jHu1tVzNNAcfcJ8SBqPn5IBBkOXAe8BVinxe2nA+cCq9L2DwGzc+erkD6PjzN/WqqaL2Bd4NPAmpSuB4DjgU3q1tuHaNev335T4ORUdjyVpX9qtQxOpGNd5XwB+wO/Tel6Dvgi8FcN1htVjohm44OBGwvnshuBl+XO16Aeb+Vp8B8TorOqmb2RuALdl6jxOMLdD3X3m7zFEQ3ufq+7n0hclSwCtgFuNrPTykq3DA4zW58YufAp4sfgi8DO7n6+t9h3yN2fcvdziJqU84HJwL8B81JTj1ScmZ0BzAX+ArgDmOnup7j7/a1s7+5r3f0Goj/Je4EngQOAO81st5KSLVKqygciZrYt8cXfnJgoaBd3v7LT/Xn0D3kDUY06Cficmb2t+5TKoDKzdYHvE5+7A+9394+6+8pO9ufuK9z9BKKPkhPNflelpkOpKDM7AvhXomZtLrCXu9/Xyb48XA7MAJ4imm9uMrO/7E1qRfqn0ie+dJV5FdEf5AUiGDmnB1efHySqTWu+ZWY7dLlPGVynAW8mypAB/2Fmr6xfyczuMLM7gYuAw8zszvQ4sMG604naEAPWAm8lmm0qzcz2MLPbzWy+mV0+UWqCzGxH4L8Kiw4CjmqybkvlyMxeApxHNPmtIUb8fTcFzpVmZlPNbIGZrTCzncbfQgZa7rahMh9E+7sTnQf3Ja4cHPgOMLnDfZ7ASNvsCcC30//zyNjWT0XbMHPni2hGeT6l4+1EZ0In2vhf2WSbfWjQR6Tw+nTiRngO3ETczMyBlc32WZVjDfw5sH76/0yimXTo8zXO+69LDLt1Yl6ZUwvnkGPG2K5pOQJeQtzbyIma3n0Y6Xfy8Vx57WM5mgy8lNRpvAp5msiPytaImNlriEAE4APu/iOiLXU5cATw3+1ejZnZCUSHVYAT3f08Ihj5AzGE87hepF0GQ2oquZg46V/g7t8DDgV+TLTx/6hRzcg4+5xOdJqeBtwMHObu3yGGhq8PXGxmle2Z7+6Puvuz6ekaojao6k4mRk39DviIu58NfDy9dqGZHdPOzlJNyHeJETRPAvu7+zzg2LTKv7dbLoeNu6/2ARy6LJ2pbCBCDGubDFyYghDcfQEdBiNNghDcfRkj0zGfNhGqRSeQ/YDXA48Bn4Do30GHwUiTIKT2o/wRYBnwRmDPHuZhIJnZdsToj2tzp6VM6fzyifT0eHd/CqDTYKRJELI47fMGIqBdjyhPIsMhd5VMGQ/gz4iZUR14RYPXd6ONZhrqmmMavL4OcT8IBw7NlOe2qg7TMXJgm/TciD4LDxEdenuZtnnEMMUV6XF/WfnqcbqvSu//qQavbUQLzTSF9eubY9ZvsM6Z6fXLhqEMdfE+mxCB3Kghq8OcrybvfUR6/3tJ8zbVvd5SM01at745ZmaDdXZKrz8NbFzlcpTeaw5qmhn6R6cfSu1HbAXRrv0wcHTuzBTSd1JK341jrNNSMDJeEFJY7xNpnWsy5bndQGRf4Mn0/4bAlcTw1C1LSNu88U6yvcpXD9O8FdE5dTWwVZN1WgpGWglC0nrbEE0Vq4DNB70Mdfgek4g5fParUr7GeO8fpPc/cYx1xg1GWglCCuv+OK13bKY8KxCZAA9i0s/PEJOC/onoi3ku8NJ299Vp08wMYJm7b+TuGwD/CHzNzLbocH9tM7OtzGyrJi/vnf5+q9n23kIzTbPmmCZq7/XGstr4zWxK6n3fCzOIuQe2JgKQ5cSPwx96tP+hYGa7NPm89iRquua5++ONtvUWmmnGaY6p39/DwG1Ek2Jpc0KY2c7pPks5vIfoL3GGmc0zs3dnSkfPmNmOZjalwfJ1gb3S0283297HaaYZqzmmidq56E1jrNMVM9vazDYra/8tpuF64hx+oZkdmTMtw8zMpqcy1s42mwK3AjsCB7v7xkR5m0xcULWnw0jooxRqG4iTsNPHHv9E+/Iaoo35CGC9wmu1ZpKd67bZh9EzFTasGaHFmpDCfgz4fVp/+5LyvGXa/+1Ex9hNC6+1WyNyaSpIjwIfazMd16Zj1uhxbYP15xETyS0jfmj3aeO9Sr0SSWm+h6jRellhea2Z5DMtlKGGNSO0WBNSt68v0KQ5qId5vjl97p8DpvfrWOd69KEMnQ/8H/AVIsiq3TrjNem9HxqvDKXlo2pGaKMmpLCf3dL695SY56OJ0WRXAIcAk6pcjqqYp0LevpnOzecQtxIY1YTYYJtvEBdYPRkp2mnCL62doIkx7JcSd4YcNwM9PHgHF760TlwpnEs0OTjRR2RS3TbNTgD1wchJtBGEFPZzfdqmlCGJjAQitcdzwOXAge1+UYAl6ZjN7cNntTtRjbce8H6iGm+HFrftRyBSO54vpM/wXcSEUw68o8UyVB+MHESbQUjaz9+lba4qMc8315WjO4APV/Vk24cydH7d8bwPOL1wHrmylTKUXisGI8fRZhCS9jGFaFJcC2xYUp6PrsvzY8Q9vGrBV6XKURXzVMjbN+s+yyXEYI9pTdZ/OVEJsEfP0tBhwpcQd6N9OiV8LrBF3TrX1WWu34+VDdI91gmgGIy0HYSkfTycOc8tfVGIgGA1EbQ9DJzS54I/FzipxXWzHk9gtzbKUDEYeYE2g5C0j9m589zPstCn8pa7DP2m1TKUXj+1bvuWg5DCPp7Lne/cn3vFylCuxyMNjsVRwGO9PL5ttxOb2XrAq4Ed3f0BM3sH8HXih20gmdkdxI/vRsBmadZCgNPd/UYAd19gZhcwMtRuMXBBm2/lPUhuP+xE/FDeCvw1MN/Mlrj7DwFSu/0JxERMX3L3K4obm9kNNG9/vtXdDx7n/Z1oyhoGa6DlMrTCzE4F/pdoK30e+Kg36RPSxMB+j8ZSuztpP/jw3QHVobUylHyZuCvv9PT8XB+7T0gjQzk/i8rRwGnUD2ga8EhP36WDyHAW6fbUhWVLiEnDyo5Ktyf6p9zESH+M+scymkdy+9D8arbYJ2Rl+tvWDKxEQOb0sLc6MBU4hmgyuKNJnp+p/d/iPo8Bfl54/vfpuG1HdGK9gZG+Mh3NQFvY96ZE09EUYsTE36b0tjR0s518tZGmo9Jne1OT47maaLZyYM82ylCxT8j/pb/jDu2t28eb03Y/6nGeDwO+Nkaeu7qSBfYg+i7NJ5oLuy03U4EF6VzT1aiIksrQbOCscY7n79Lfc9soQ8U+Ic8U9tXWqDNikkWnh3flJS5gPpny/HyTPC+tYjkqowzlfG/iDtBfHKf8LqTB7zpxs8Xf0sOZxDvJwDHAT+uWfRb4Xp8/nGIfkdXEnA+HEX0R1hBX/BvWbdPwBMDoadvbmmeksJ9b0zYHlpTn+j4i84kf1Y3bKaxEX5qL6padA9wF/DPwlh6m+aXAz4h+IU8RU123vP+yTwC8uDnuTuCUdJyvSMuOarEM1XdM3YI25hkp7Of4tM0lJea52EfkEeDTwCu6OdZ0OHU7MSqp0fKeTeHdhzJU7COyDPgSMJO4JYADP2ixDI3qmEob84wU9lObXmFUP7ke5rnYR+RZ4j46+xO1qJUrR2WXoZzvzYv7iPyeCLB3HmP9TdI57fPp/8nAzsSFeNtDd907aJohrpiX1C2bC5xkZlPc/bkO9tmpxUQBu9wL0/2a2T3Aa4FdiGryppoN0TWzA4g5AI5Iz9/r7k2rzdNQvZnp6cJOMtOih4n7VVzq7g8U3r/lHbj7iQ2WnZz2czZpxl0zm+Tua7pJbPpcXt/NPkr2BNED/BJ3v7O20MwWEveAmZVeb6rZEF0zO5ToK7U3MbR3X3f/1TjpmZX+llmGVhI/HHOImpe10F4ZqufujxaergHWpuHwFwM7ED9Qb3f3x1rc32rgiSGZ7X4NEUDMAa5z91UAZrYsvT7LzMzTWbyRMYboLk7H4CximCruftE46dk1/b2r2+/vOG4j8vwdd19eW6hyNHRWEfNIzSFGw47ZPOzuT5vZfkQg8ivi1hRLgau902n3c0R4PYrimkb6jDSRjHnzJ8afMbXlmhEi6HHg4RLzvA5NqsPoUdRM9P/5KXE1/58D8DmXfTXQsBwRV3cOLBpn+zGH6NLGDKxEv5l707p7Zchz18eaaN5bQFzd7wmcV8tbk/XnjbO/OQx+jUiz42mMNJE0bYqktRlT25mB9VM0aBLqR56rWo7KLkM533usz7JvecydgJIObG1a5XvGKLitzpja6gys56R1vpYpz9m+KFXMFzHb7PL0/jOarNPqjKmtzsD6hrTOE8CUYTvW1E3dTnTM/CwxwdahhfW2JuaWmZe+W7X/t26wz65+QHKWofTel6T3/1yT19uZMbWVGVjXAR5I67w1U54rV44yl6FKnttflMfcCSjpg5tMTNjkwOwGr7c7WdmYwUj6oan9aO2SKc+VLKyZTwBfoklwSZuTldFCMELMx+PAZ4ftWNNg6nZgg/R3U2B+k+3mjbPfYQ9Edmek78iUutc6maxszGCEmL/Giem211U56k05UiBSch5zJ6DED+9f0gf4YwrNGe0GIYXtmgYjhff6Scb8VrKwZj4B7Jje/zkKVevtBiGF7ZoGI0Rnr1XEsMvthu1YA+9LP7bz0uPdxBXsbUQV+0FNtps3xj6vJy4obgeOHNIyZER/Hwf+obC87SCksG3DYCT9iNdG1p2eI79VLUcKRErOY+4ElPjhbVb4sTg5LesoCCnsc1QwQnTeXZ2W7ZMxv5UsrLnzxUjV+m1ER7mOgpDC/kYFI6kc1X6svjpRj3VV88XIzMfPp/LTcRBS2Gej6eBPT8+XAlMn6vGuWp6qeDxH5TF3Akr+AA9PH+JKRu4d0lEQUthnMRj5H2IEkQNfzpzXShbW3PkihkLW5oM4p5sgpLDP+mCkNvzzITLdun0QjnWV8wVclNKxkJFZpzsKQgr7LAYjn2Zkbo9Spg8YpuNdpTxV8XjWP2o3Z6osM7uUqO6rGfMuumk477Hp6SH+4uFktXV2I4b2Tk2Lfk2cUFb0JtXtq81I6BWbLXAQ8mVmhxA3+qulYcy76La4z40YGdoL0SRzgLvf0k1auzEIx7oMg5AvM5tKzNOzTVrUyl10W9nvqcTQ3poL3P24bvbZrUE43r2WM09VPJ711smdgD44lrjShJip8Jdjrezu57n7jPQYFYQky4irZIhmmQNyBiFSLne/nui1X7OYmDCvG6uJCdRqzsgZhEi5PObZOICRcrOUCEa6dR8xoRjEnA6j5ggSGXSVD0Tc/XnijpA3E0Myf2BmF5jZJu3uy8zWMbMTgbuJtt5HiJqQ3/QyzTJ43P2TxH2IPP1dYGYzOtmXmb0eWAScTNSEnOTuZ/YoqTKg3P2XwOuIjpO7AHeb2Qetg9m2zGxTM/sGUau2PtEh87U+zmRUIoOo8oEIgLuvJKaE/yQxMuFY4CEzO8vMdhhv+/SlP4W4+vgysAHRk3uWu99TWsJloLj7WcB+xNDIXYCFZna1mR1oZmN+l8xsXTM7xMyuI0Y2TCeuYPd293PH2laqw2P23l2JW1JsTNz/5x4zO7GViyMze5WZfYGo5T2SGNH1caKpsJ+zWov0TOX7iNQzs52IL/+ehcX3Ep3IFhHNLmuJk8TOxJTbM4lJdSA6F37E3a/qV5pbUdV2xEHMV+rfcSbwYWLEC8Q9Gn5OlKMHiYB3PeJGjbOIK+Et07qriID2jBQkD4RBPNa9MIj5SrUg7wK+ALwsLX6OaPZbSNS6riAuFrckgpddiZmPa+YDx7n7/X1KdksG8Xh3S31EyjXhApGaVD1+PPA3xJ1hx3MzMbrh+17u/Rs6UtXCOsj5MrNpxM2/PgS8vIVNHgK+Alzs7svGWbfvBvlYd2OQ85Xuo3I4cS7at4VNngUuA77i7ovKTFunBvl4d0qBSLkmbCBSY2ZTiBvkzSKab96WXrqLuA31QuJ+I73oWFaaqhbWYchXapbZnqj1mEXc/O4lxHDKx4kytBB40Af4CzcMx7oTw5IvM9ucKD+zgFcRF0gvEHeuvouocbs79XsbWMNyvNuhQKRcEz4QKTKzOcD709OlwLae7kw66KpaWKuar0FU1WNd1XwNqioebwUi5VIgkqR2/8eJkTU1+w/LkMpaYa2qKn8JB4XKkPRClcuRApFyTIhRMy06ghcHIRC90ofF9bkTUKIq522QVPk4Vzlvg6aqx7qq+cpONSKJmc0DZtctfhbYyt2f7n+KRERkolONyARhZtszOgiBmCjonX1OjoiIyIQxKXcCBsRexC2mIW5qB7AcuJ+YuEpERERKoKaZOoWOVm9x95uzJkZERCY0Nc1MbKtyJ0BERKTqFIg0tzR3AkRERKpOTTN1JkI1mIiIDIeJ8JukGhERERHJRoGIiIiIZKNARERERLJRICIiIiLZKBARERGRbBSIiIiISDYKRERERCQbBSIiIiKSjQIRERERyUaBiIiIiGSjQERERESyUSAiIiIi2SgQERERkWwUiIiIiEg2CkREREQkGwUiIiIiko0CEREREclGgYiIiIhko0BEREREslEgIiIiItkoEBEREZFsFIiIiIhINgpEREREJBsFIiIiIpKNAhERERHJRoGIiIiIZKNARERERLJRICIiIiLZKBARERGRbBSIiIiISDaTcidgUJmZ506DiIhI1alGZLQncidARESkoNK/S+auC38RERHJQzUiIiIiko0CEREREclGgYiIiIhko0BEREREslEgIiIiItkoEBEREZFsFIiIiIhINgpEREREJJv/ByYpj4esEN75AAAAAElFTkSuQmCC\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%config InLineBackend.figure_format = 'svg'\n",
"import schemdraw\n",
"from schemdraw import dsp\n",
"\n",
"hbox = 1.25\n",
"wbox = 1.75\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R$\", \"left\")\n",
"d += (sum1 := dsp.Mixer(W=\"+\", S=\"-\"))\n",
"d += dsp.Arrow().at(sum1.E)\n",
"d += (cont := dsp.Box(h=hbox, w=wbox).label(\"$K_c=5$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(cont.E).right()\n",
"d += (sum2 := dsp.Mixer(W=\"+\", N=\"+\"))\n",
"d.push() \n",
"d += dsp.Arrow().label(\"$U_1$\", \"right\").up().at(sum2.N).reverse()\n",
"d.pop()\n",
"d += dsp.Arrow().at(sum2.E).right()\n",
"d += (proc1 := dsp.Box(h=hbox, w=wbox).label(r'$\\frac{2}{2s+1}$', \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(proc1.E).right()\n",
"d += (sum3 := dsp.Mixer(W=\"+\", N=\"+\"))\n",
"d.push() \n",
"d += dsp.Arrow().label(\"$U_2$\", \"right\").up().at(sum3.N).reverse()\n",
"d.pop()\n",
"d += dsp.Arrow().at(sum3.E).right()\n",
"d += (proc2 := dsp.Box(h=hbox, w=wbox).label(r'$\\frac{1}{2s+1}$', \"center\").anchor(\"W\"))\n",
"d += dsp.Line().at(proc2.E).right()\n",
"d += (dot := dsp.Dot(radius=0))\n",
"d.push()\n",
"d += dsp.Arrow().at(dot.center).right().label(\"$C$\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().at(dot.center).length(hbox*1.5)\n",
"d += dsp.Line().left().tox(sum1.S)\n",
"d += dsp.Arrow().up().to(sum1.S)\n",
"\n",
"d.save(\"./img/prob701.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "352c5079",
"metadata": {},
"source": [
"1. ¿Cuál es la frecuencia del estado transitorio si la variación se produce en la posición 1? ¿Y si es en la 2?\n",
"\n",
"2. ¿Cuánto valdrá el _offset_ en cada caso? Suponer un escalón unidad.\n",
"\n",
"**Problema 7.2**\n",
"\n",
"Para controlar un sistema de primer orden se utiliza un controlador PD con un elemento de medida cuya dinámica también es de primer orden.\n",
"\n",
"1. Determinar las expresiones de la constante de tiempo y el coeficiente de amortiguamiento para el sis- tema de lazo cerrado\n",
"\n",
"2. Si τp = 1 min y τm = 10s, calcular Kc para que el coeficiente de amortiguamiento sea 0.7 en los siguientes supuestos: (1) τd = 0 y (2) τd = 3 s.\n",
"\n",
"3. Comparar, para las dos situaciones del apartado b) el offset y el periodo, y comentar la ventaja que representa la adición de la acción derivativa\n",
"\n",
"**Problema 7.3**\n",
"\n",
"Sea el sistema de lazo de control de la figura adjunta:"
]
},
{
"cell_type": "markdown",
"id": "4ad36ff6",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "14a98803",
"metadata": {},
"source": [
"1. Dibujar el diagrama de bloques indicando la función de transferencia de cada subsitema. Suponer que el detector de nivel actua sin retraso alguno sobre el controlador\n",
"\n",
"2. ¿Cuál es la función de transferencia para variaciones de carga ($H/Q_1$)?\n",
"\n",
"3. Discutir la influencia de los parámetros de proceso y de los del controlador sobre la dinámica del sistema.\n",
"\n",
"**Problema 7.4**\n",
"\n",
"Sea el sencillo lazo de control de la figura:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "835a1f23",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQQAAABZCAYAAADYb1qXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKxElEQVR4nO2de8wcVRmHn7cU2qKl5Q7lEpAUAiIUVGhES0UuSo0KCBLFQEH0DyRBo9FQxSCC8VaRagS5KkQSTIuKNBKgIdzkWkvTBIqgXKQSihQslIvY1z/es9Ppdne/nf2+3dnZ/T3J5PvmzJmz7znvzG/OdcbcHSGEABhXtgFCiP5BgiCEyJAgCCEyJAhCiAwJghAiQ4IghMiQIAghMiQIQoiM8WUbIMYGM7sZOLZsOzpksbvPKdsIAaaZioOBmVXake5uZdsgVEMYOKp2Y1VdyAYN9SEIITIkCEKIDAmCECJDgiCEyFCnImBmE4H3AAcAWxFC+TqwEljq7mtKNE+InjG0gmBmWwGfB04DZtCiLMzsSeB3wGXu/lQPzBOiFIZuHoKZTQG+C5wBvCMFO/Ao8FdgddqfDOxPiMXEXLybga+5+8reWT0yteG7qg47Vs3uQWWoBMHMjgauBHZNQXcAvyRmyr3a5JzNgUOBLwEnAVsAbwDfAi529/912ey2qOqNVVW7B5WhEAQzM+B7wLkp6EHgTHd/pGA6OwA/IJoZALcDx7n72jEytWOqemNV1e5BZeAFIYnBbcARwHpgHvBjd397FGnOAa4Gtgf+DexZtihU9caqqt2DyjAMO36DEAOAt4H7RiMGiaVArYmxLbDIzDYbZZpClM5AC4KZHQRckHaXEO3/xWY2exRp7kz0PexJdESuBo4Ezh6FqUL0BQMrCGa2BXANMZx4CXAUUc2fRIeikBODvYFHgFnEaAXARWY2fZRmC1EqAysIwBeIiUZPAue6+/oU1pEoNBCDI939RXe/CbgupfnDMbRfiJ4zkJ2KqSNxBbAf8Bl3vyF3bBxwBTCXmI14rLvfMUJ6DcUgd3wn4FlCYPdw92fHMj/tUNXOuaraPagMag1hFiEGzwM35g8UrSmMJAYpzeeBhUR5fnGM8iBEz+lIEMxsazNzM3vVzNaZ2dNmdsbIZ/aME9Lfq9z9v/UH2xWFdsQgx6Xp76dHY3g/YmbfN7Nz2oj3gJm9uwcmDSU98YO7F96ADwOrc/ufJYb0tuskvQ5tmAVcDhxGavrkjt1LTDM+qi58NnBNbn8ccFWKuw6YnTu2M7G4yYFlI+UNmAC8Rcx1mNylPG8HLAI+AWxed8zDnYXTnAScTwjeGuBpYt3GzHR8e+A5YFIbaZ0ELCz4+x3ZXYWNmOZ+cptltzWwFji8Lvza5POu+iE7t8OMfgW4Jbe/S3Ls9B4W9sdqFxPwN2LC0e7EqMK6FL5t3TkbCUIK20QUiopBLq2l6ZwPdSnPO+Ty/AIwHzggHSt8YxFrOe4G/gTsl8LeSTR7zkv7XwcubzO9icBLwM4FbBhkQXg75e9logY5k7qHV138nwC/z+1/G3gY2LLbfsjO7TCjvwEuSv9PTfsPtcrsGBXw1FSoxwM/zd0ctW09cFf6f1WD8zcRhBReLwrPFBWDlM6v03lnjGGeJxALrI4HzmyQZ88JkRdMewFwDzC+RZwlwCm5/XclAXkReAW4tS7+rcCpBWwYGEEANiNGto5L/mrkq8eAbwI7NTh/F6Kjey/gRKKjelojP4zki6J+yM7rMOPLgdeA/6RM/rn+xiGqS40KpFfbupwt96eb+wlCOZel7ZhcnHHA9bnznygiBimNp0rOc9s3FrAN0cRpWZshJl69P7d/N3AWcfFPBA6ri38JML+AHaWWV4nbyiblcRVxP60GDm7mh5F8UdQPta1wp6KZTQD2JaqqWxGdaDOBTTrv+gV3P9TdZxAdiX909xlpuyUXbUfg4Nz+NGL5cxGqNHR2BPCSu99VC0idUS+b2etmNisFTyXatjX2Ii7Azdz9DXe/py7dtekc0Zpm98t84BjgLHdfmgufysZ+gNa+6MgPnYwy7A+8CfwdwN0XElXsE/KR3H2Ou1u3Nhp/lOR+Yu0CwFtpPsKINBhN+C2dzWh8MP09pUt53rHBbz5BLMUuyk7AqnyAux8CTCeeNitS8Bri3RA1Pgd8ElhlZlea2TZ16U4m2syF6Oa10qI8u/rbQP3S+H8CFwH7uHuzh80WxP21qC683g/Q2hcd+aETQTgIWOGpXpJYTPR8l8G/iCXJ+7n7TOBHRIfbFGK9QUsaDS0Sb1K6muKiUKthLG/b+s5YS0yu+iCwt7tf2EEazwC7NViUNQN41t1fSvvLibIBwN2XuPtHiHkeB7JhKXiNfYlyFMEbxAPmaGLS2jx3f7xF/AOJ+6t+Ad5GfoARfdGZHxq1I1ptwM+BX9WFzSb6FCYWTa/TDdgH+CgNOsQIgXLgxBHSaDqaQIshySZpbZOL27STbpR5nkw8FbZscKxoH8KWRC1vQbLdCAG9HrgpF++rNX8THWXTU9y9iGnhR+TiTiD6aKYVsKOQ3WNcnl39bWKdy5SC5/wMuKJBeOaHkXzRiR+ydMtwRA8cfV5y9nUt4ow4tFhEFIBTU7w7S8pz4Ys7XUg3EjWqF1M5XAjsnouzHVHVnUS0b1cRS79XEi+Zyad3IrCo23aXWWY9sOkO4MsNwjM/pP2mvujED9m5ZRdAlwp1D2II8k1g+wbH255n0K4oAA+kOHNLynPXLm6i3XtOG/HuB/bvF7v7+bf7zQ+1bSAXNwGY2U3Ax4kJNhfkwotMR66d03JBlJl9gBjPXwPs6u7rxjQzbVDVRUJl2l3VMusmg7q4CWLiEsC5ZrYPdCYGAN5i7UMahr0sRb20DDEQYqwY2BoCgJldQ7Tt/0K0q5ZQUAzq0tukpkCMSswjhv8OLEsQqvq0Uw2hvxh0QdiaGE+fRkztnEKHYpBLMy8KbwGbp0Oz3P3uURvdIVW9uCUI/cUgNxnw+ATbycQEkSnEG5KPbiUGZnaWmS1L27QGadaaD3cSk0iMeCNTaWIgxFgx0DWEGmZ2NjFMMx64jxgJeKzDtKYSq9JOT0F/IL7NUGpBVvVppxpCfzHQNYQa7r6AeIfDc8S6i2Vmdn569VlbmNkkM5tLNEFOJ4Y0z3b3T5UtBkKMFUNRQ6iRnu7zifY/xHr1hcQS0oeAx1OToBZ/GvA+YibmacRLLCDGeee6+6O9sLsdqvq0Uw2hvxgqQahhZocD5xDrL/K1pNfY8BXo14gpvXkeBn4BXOuj/9jLmFLVi1uC0F8MpSDUMLPdgFOIj7m+lw0fga3xCiECS4Eb3P1B+pSqXtwShP5iqAWhHjObR3wUFuJDrkdVpX+gqhe3BKG/kCAk0rsTlrPhpSjrgd3cfVXzs/qHql7cEoT+YihGGdrkIDZ+Q9I4ojkhxNAgQdjAaY3C2n3rkhCDgJoMZAuUVrHpqALAIf3cmVijqtVfNRn6C9UQgjk0FgNoXHMQYiAZP3KUoWAFsWoR4Lb09zvEOw5eLcWiDqk99YToBAkC4PHSy8cBcl0G97r77aUZVZzFNH4TdRVYXLYBIpAgNOeFsg0ogrvPKdsGUX3Uh9Ccf5RtgBC9RoLQBHev/0qOEAOPBEEIkSFBEEJkSBCEEBkSBCFEhgRBCJEhQRBCZEgQhBAZEgQhRIYEQQiRIUEQQmRIEIQQGRIEIUSGBEEIkSFBEEJkSBCEEBkSBCFEhgRBCJEhQRBCZOglq03Q68zFMKIawqasLtsA0VPk7xz6lJsQIkM1BCFEhgRBCJEhQRBCZEgQhBAZEgQhRIYEQQiRIUEQQmRIEIQQGf8HWQB22F8rtYkAAAAASUVORK5CYII=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1.5\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R$\", \"left\")\n",
"d += (sum1 := dsp.Mixer(W=\"+\", S=\"-\"))\n",
"d += dsp.Arrow().at(sum1.E)\n",
"d += (cont := dsp.Box(h=hbox, w=wbox).label(\"$G(s)$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Line().at(cont.E).right()\n",
"d += dsp.Dot(radius=0)\n",
"d.push()\n",
"d += dsp.Arrow().right().label(\"$Y(s)$\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox)\n",
"d += dsp.Line().left().tox(sum1.S)\n",
"d += dsp.Arrow().up().to(sum1.S)\n",
"\n",
"d.save(\"./img/prob704.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "433cded5",
"metadata": {},
"source": [
"donde $G_p = \\frac{k}{s(s+p)}$.\n",
"\n",
"Determinar la ganancia k y el parámetro p para que la dinámica del sistema responda a las siguientes características:\n",
"\n",
"1. Para un cambio en escalón el overshoot debe ser inferior al 5%.\n",
"\n",
"2. El periodo de oscilación de 4 s.\n",
"\n",
"**Problema 7.5**\n",
"\n",
"Los marcapasos electrónicos actúan sobre el corazón de manera que este responda adecuadamente al ritmo cardiaco deseado. La situación dinámica se puede representar por el bucle de control retroalimentado de la figura adjunta:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1e95156f",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAACQCAYAAADTAMs5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfwElEQVR4nO3deZhcVZnH8e8vQADZdwmriiCLyqLGBSQKggQQVJARRAKKOC6gooIIiMgm4wAKMrghCsjihjyCIjrKKoso6CiigomBEJaQQMImhHf+eE+Rm0p3p6q7q+p29+/zPPV0113PPXXr3rfOOfccRQRmZmZmdTGu1wkwMzMzq3JwYmZmZrXi4MTMzMxqxcGJmZmZ1YqDEzMzM6sVBydmZmZWKw5OzMzMrFYcnJiZmVmtODgxMzOzWnFwYmZmZrXi4MTMzMxqxcGJmXWcpCmSru/Adn8m6YDh3q6Z9ZaDE7NRStJUSU9KmifpAUnflrT8ILbzG0nv70QahyoidomI7/Q6HWY2vBycmI1uu0fE8sDWwKuBo1tdUWnI1whJSw51G2Y2tjg4MRsDIuI+4GfAFpJeK+lGSXMk3SFpUmO5UkpyoqQbgCeA84HtgLNKCcxZkjaUFNWgo1q6UqpwbpB0uqRHgOMWLKYzJT0q6a+Sdqisf6CkOyXNlXSPpEOq6Ze0h6TbJT0m6W5Jb+1jv+MkHS1pmqQHJX1X0kplXiPNB0j6l6SHJX22sv1xko4s254l6VJJq5Z5y0i6oEyfI+lWSWsN00djZn1wcGI2BkhaD5gM3A9cAZwArAp8EvihpDUqi+8PfABYAZgCXAd8JCKWj4iPtLjLicA9wJrAiU3TVgc+B/yoEQAADwK7ASsCBwKnS9q6pP01wHeBTwErA28Epvaxzynl9SbgxcDywFlNy2wLbALsABwradMy/VBgT2B7YAIwG/hqmXcAsBKwHrAa8EHgyRbzwcwGwcGJ2eh2maQ5wPXANcC9wJURcWVEPBcRVwO/IwOXhvMi4s8R8WxEPDPI/c6IiDPLNho38geBMyLimYi4BLgL2BUgIq6IiLsjXQP8giyxAXgfcG5EXF3SfF9E/LWPfe4HnBYR90TEPOAzwH80VSt9PiKejIg7gDuAV5bphwCfjYh7I+JpsrRnr7LuM2RQslFEzI+I2yLisUHmi5m1wMGJ2ei2Z0SsHBEbRMSHgLWAvUv1xJwSuGwLrF1ZZ/ow7LevbdwXEVF5P40spUDSLpJukvRISdNksoQFssTi7hb2OaFss7r9JcljbphZ+f8JsnQFYAPgx5U8uROYX9Y9H7gKuFjSDEmnSlqqhfSY2SA5ODEbW6YD55eApfFaLiJOqSwTTes0v3+8/H1BZdoLF7MOwDqSVHm/PjBD0tLAD4EvAWtFxMrAlUBj2enASwY6qGIGGWRUt/8s8EAL604HdmnKl2VKKc0zEfH5iNgMeD1Z/fTeFrZpZoPk4MRsbLkA2F3SzpKWKI09J0lad4B1HiDbcAAQEQ8B9wHvKds4iNaChzWBQyUtJWlvYFMyCBkPLA08BDwraRdgp8p63wIOlLRDabi6jqSX9bH9i4CPS3pReWT6JOCSiHi2hbSdA5woaQMASWtI2qP8/yZJL5e0BPAYWc0zv4VtmtkgOTgxG0MiYjqwB3AUGQxMJxuaDnQt+DLZ/mK2pK+UaQeX9WYBmwM3trD7m4GXAg+TjWT3iohZETGXbJB6KdkQdV/g8kqab6E0kgUeJdvObMCiziWrYK4F/gk8BXy0hXQ1jvFy4BeS5gI3kQ14IUuFfkAGJneW/V/Q4nbNbBC0cBWwmZmZWW+55MTMzMxqxcGJmZmZ1YqDEzMzM6sVBydm1nOSrpB0Ra/TYWb14AaxZtZzkgIgIrS4Zc1s9HPJiZmZmdWKgxMzMzOrFQcnZmZmVisOTszMzKxWHJyYmZlZrTg4MTMzs1pxcGJmZma14uDEzMzMasXBiZmZmdWKgxMzMzOrFQcnZmZmVisOTszMzKxWHJyYmZlZrSzZ6wTY6CbpCmByr9MxxlwZEbv2OhFjgc/vnvD5PQYoInqdBhvFJPkE64GIUK/T0I7GeTJS023dNdLOE2ufS06sK3wx6Q7fLHvD53d3+PweO9zmxMzMzGrFwYmZmZnVioMTMzMzqxUHJ2bWU5I27HUazKxeHJyYWa+t3esEmFm9ODgxs17zdcjMFuKLgpn1hKRvSJoGXF+ZNq28Dulh0sysxxycmFmvXA2s3zRtfWA94MruJ8fM6qKnwYmkcyQd08s0mFnPXA7M6WP6LyNiepfTYjYqjJb7aseDE0lTJT0paZ6kmZLOk7Q8QER8MCK+UJabJOneTqfHzOohIp4CLupj1nldTorZiDIW7qvdKjnZPSKWB7YEtgI+06X9mlm9ndf0/jHgsu4nw2zEGdX31a5W60TETOAqMjMp0d4JkpYDfgZMKJHgPEkTJB0n6fuSLpA0V9KfJG0s6TOSHpQ0XdJOje2XdS6X9Iikf0g6uJvHZ2ZtuxW4s/L+koh4oleJMRtpRut9tavBiaR1gV2Af1SnR8TjZfqMiFi+vGaU2bsD5wOrAH8gP4RxwDrA8cDXKpu6CLgXmADsBZwkaYfOHVHnSFpV0s6SPltOpF9JukbSVaVO8WBJW0laotdpNWuH0sskvQc4jYWvQy+T9AVJe0qa0KMkmo0Yo/W+2q1RiS8ro0kuD/wv8Lk21r0uIq4CkPR94B3AKRExX9LFwNclrQysAGwL7Fbqsm+X9E1gf+BXw3conSNJwHbAh4B30trn8y9JXwO+FREPdDJ9ZkMhaQXgPcB/Ai/vZ7HtyquxztXA2cBPI+LZjifSbOQY1ffVbgUne0bELyVtD3wPWJ2+W+n3pXrDfRJ4OCLmV95DfjgTgEciYm5l+WnAqwad6i6StDnwLWBimfQccAPwO+A24H5gPrAssCmwDfAG8tHLE4HjJP0XcHxEPN3d1Jv1rwTdhwBfBFYskx8m+zf5HfAnYC4g8tqwFfm9fQPwlvK6R9LBEfG/3U29WW2N6vtqt4ITACLiGknnAV8C9myePcTNzwBWlbRCJSPXB+4b4nY7qlTLfBo4DhgPPEgWqX1jgMcpryzrjgN2JEta3gYcBbxN0pSIuK3DSTdbLEkbkEF3oxj4euCrwI8i4t/9rHZpWXcV4ADgw8BGwK8knQ0cERHzOppwsxFitN5Xe9HPyRnAWyRt2TT9AWA1SSsNZqPlRn4jcLKkZSS9AngfcOEQ0tpRkpYlGyydRAYm3wBeGhHHttLPQ0Q8FxG/iIg9gTeSdY5bANdLOrBzKTdbPEmTyJKRHciSkn0iYruIuLg5MCmPPJ5XnRYRsyPiDGAzssj6WTIQv9HtUcwWcgaj7L7a9eAkIh4Cvgsc0zT9r2TDm3skzRnkxefdwIZktPdj4HMRcfXQUtwZkpYEfksWWT8D7BoRH4iIxwazvYi4HngledzLAOdKettwpdesHZK2AH5JFjX/Adg8Ii4dzLYi4pmIOJ4sSp5Ntle5o9SJm415o/G+qoihlvrYYEj6EnB4ZdL3gAOG0uhP0svJhlGrl0lPAluXE7QnSoMtIkK9SsNYUof8LtUxfwTWLZP+Dbw9Ivrtkr6UskyJiCkDLHMs8PnKpJ8Dk6OHF7E65PdY4vweOzy2Tg9I2hb4BNnA9YPAPGBf4DulRGUw26wGJj8jo+VlgW/7cWPrstPIwORm8kmb8cCPJU1uXlDSzZJuB75Jtpe6vbx2blquEZg8BxwGPAK8FTiokwdiZr3hkpMuK+1M7gBeCpwYEUdLej35nPnyDKIEpY/A5B1k1c7/kc+tfyoivjSsB9J62vxLp4t6nd+SdiEbbD9NVjP+Dfgy8FEGKEEZqOSkKTB5b0RcKGlfst77MWCLXo3F0+v8Hmuc32OHS066bz8yMPkL8AWAiLgR2JlBlKD0FZhExFMRMQf4QFnsMyUoMuu0RrXLMRFxV6lyOQw4kwFKUPrTV2BSZl0E/IR8NPnjw5V4M6sHByddVPp7+HB5e3K1P5LBBCj9BSaVbV5JPi2xKvCuYTwUs0VIejXwarLR6lmN6YMNUAYITBrbPL68PVDSC4brOMys93oanChHVtyx/H9U6XluNJtIjn/wMPCD5pntBCiLC0wqzi5//3OoiTdbjMY5dm5EPFmdsbgAJSJ+U63SGSgwqazze+AmYGXgP4b1SKxPks6W9PnFL2kjUZ3uybUpOYmIkyLi/b1Ox1BJWlrSMv3M3rH8vbifQKKlAKWNwATgErKuf6KkFftZZsiGa9vly/FvSas3Tb9dUkjacDj2Y4OzmM+5cX5/p6+ZrZagtBKYVDT2teMAywyJpOVLh4c9IWlfSb9TDtx2v6SflUb13U7HB4CnIqKdbtKtBb0+x/rS63tyVzJjsE+gjFDrAveXXxivKVU5DduUvzcPtIGBApQ2AxPKCK9/LG+3HsTxtOpvki6RtMswfN7/JJ+tB54/5kG1mRlj5143fLYEih+TtEZjoqQ1gfWAx8n2VH1aXIDSZmACcEv528nutCcD/1QOSLhRB/ezCEmfIDvYOglYi+yd82xgjza3M+TvQUR8PSI+MdTtWJ+6eo6NiOtiRCz2RV50fgQ8BMwi65NfQt4kZ5HVFBcCK1fWmQocQd4Ynya7yt+f7Jd/FvDZssyOZfnjgAsq638fmAk8ClxLduLUmLcs8N9lW4+SXWIvW+a9DfgzOcbAb4BNWznG4XqVfInK6y9k9/QTgH+VaZs2rTMJOK+Pbb2eHHMkSv5uWT6DIJ+IWKbFNJ1T1jm8g8c9u3LMM8hxVDZrTGtjO1OBo4FbK9O+VM6XIDsD2pXs2OsxYDpwXGXZDcty7yv5fW2ZfjBwZ8nPv5D9vwAcCdxdmf72yramkOMbnVnOs78CO1TmH1jZ5j3AIZV5qwM/LefhI8B1wLgyb9Nybs4p5+rbKutNLumYS3YR/ck2P4e28nsQn/MXK5/zM8BlZJfZu5dp1/WxziLnNzmOzlfKOk+X4z62vJ8P7NdiesaX9QNYqUPH/C4W/k5fV86vFTuZ38BK5A+UvfuZvzQZuMworzOApSt5fi95DZ7JghFof0peQ2aX/9cty7+u7KvxegqY2sZ+DieH3rgfOLCD519Hz+9evQY6x/pZftTfk1vJtCXIR19PB5YjH1Hdlhzr4i3lxF2jJPaMpoy4vWTisuSNah7ZzfrSZF8Izw6QEQeRIyI2vhi3V+Z9tRzkOiV9ry/LbUz+cnsLsBQZFPwDGN/hE+uFZPfa9zadYNXXfPLXYDSnh36CkzKvGqA8RZuBSdnGJ8t6/z3Mx30UOWjbwwMc92CCkx2Bu8ib+BJkALIBC4KTSWQvoeOAV5BdNO9Z1t+wLPfdcr4uC+xN3uhfTd4UNwI2KMvvTQaO44B9yvmzdpk3pZyjHy/n0z7kF2/VMn9X8oIgYHvgCRYEPSeTQeFS5bVdWW6pck4eRd5Y31w+303KevcD25X/V2lsr438G/aLNzns+oWL+Zwb5+gi53F/5zcLByjP0mZgUtnO38u6mwzjMW9FXqMGOuYnOpHflTS8teTLkv3MP55sc7MmeQ2+EfhCJc+fJYPJpcv3YDVytPMXkNfW7wOX9bHdpcjr68lt7Of4st7kki+rdChPRk1w0sY5dj6VwJsxck9uJQNfR0ZnfX5BKsvtCfyhKSMOqrw/lmxr0Xi/HNkWos+MaNr2yuWDWom8iTwJvLKP5Y4BLq28H0felCZVpl0xwInQlVcf6Z5EP8FJmf8eFgQ29wHLtfkl+GjdjnmAtE4lg5OjyRv8W4GrySg/gA37WOcM4PTy/4ZluRdX5l8FHNbi/m8H9ij/TyF/Kaoy/xZg/37WvayxH/Ji/RNgo6ZltiN/fYyrTLuIUvpDlvYcQj+/mFpIf08/Z2BaO+c3GaDcVFn/1EEc89xhPoaOnd9tHtd+wMwB5t9N9pDbeL8zC0o7JpHX135/xJAlsbP7mP4/5HVyXIv7eZLK/YEsQXlth/Kk1+d3r16/ruTBqLon9/dqpc3JeuQFZ6FOwSStKeliSfdJegy4gAXdpjdUO0aaUH0fEY+TRUmLkLSEpFMk3V22PbXMWr28liG/MM0mkMVKjX08V/a5zmKPsosq7UcW2ztmaW9xOnkRn08e49fbrDMcP2yJ757zyfY2U8hSkOdJmijp15IekvQo2cvuQOfeevR9viDpvSXP50iaQw6cWN3WfVG+VcU08jOgtK+5SdIjZd3JlXX/i/yF8AtJ90g6skyfAEwv52Z1m41z9J1lO9MkXSPpdX2lu8aev6a0cn6TF6+J5IUO4LB2+kFp7GooCa6xWcDqA3zXF7reUTk3i4ei0h5N0gskfU3StHJdvRZYWZUepCUdQgYc+1bO0cXtZ1bT/eEJskNJGz7PVP4fE/fkVoKT6cD6fXxBTiYvKK+IiBXJX/fNF4nqRf1+MlOB/KKQxYx92Zds8LUjGZlt2FiNLAJ7iixObzaDLP5v7ENln88P7xwRu0aEOvUii9aqZgKnApuX9AG8qKRlYkRsCbwfuDwitiyvq0r6mxu/7sjgurp/Ufl7ZAePe05lf/OAc8niwkGJiGlkw9jJZN1q1feAy4H1ImIlsvpkoHNvOn2cL5I2IEeC/giwWkSsTPaqW93WOk2NmtcHZkhaGvgh2R5mrbLulY11I2JuRBweES8m22N8QtIO5DmwXlPL/OeHII+IWyNiD7II/TJgsIPldepzPrVpV9eT52+jH52/V9KwuPO72vh1fwbRUVv5DjTycrUOHfM+Tbv9K1l33+kfPb8lr3V79jN/oesd5dysvI+FF+dwYBNgYrlmN76fApC0Hdkx5B4R8Wgb++m6Tl7D+zkHOrpfBjjHyjI7VeaNqntyf1oJTm4hD+IUScsph01+A1n3NA+YI2kd4FOL2c4PgN0kbStpPFns3d/+VyAb7Mwi60dPasyIjLzOBU6TNKFEdK8rN4tLgV0l7SBpKfLL+DRZR9pN/y5pmUzeQI+IiL8Avy/zt+l3zaKfp3J+w+B6km3s77Z2DqJNQab3vcALI+J9EXHdELf5PuDNkRF91QrAIxHxlKTXkHkxkG8Cn5S0jdJGJTBZrqT7IQBJB5IlJ1VrAodKWkrS3mQ7mCvJm+jSZd1nld22P38BkbRb2Y/Ihrvzy+tmsg7202Wbk8jg5WJJ4yXtJ2mliHimsl7dTAdOADaOiO0i4ltkw2GArZuCuT7181TOYbQfoGxK1p//MyIeaf9QWjaHrO6YCGwWEadGREdv0CVAOBb4qqQ9S8nHUqXE7lSyOvBoSWsoH70/lvy13J8VyOL3OZJWJdvJASBpPbLbgfdGxN+a1mt3PzY4c2jtHBsb9+RorZ5vffJXXKMV8FfIkoDbSmbcXnZ6b2WdqZS6q8q0A8g69QFbBpNFgj8h65KnkTe8oNTfkxejM8joq9FyuNEy+O3k0w6PAtdQaVHcjVdJ26r9zDuuHMdpTdMnUamTJxt79vtUDos+xdNv3SN5A2003Fulg8e9Tj/Tgzbq5Ps6b8r059ucAHuV82Iu+cTBWZVzZ8Oy3JJN63+QbGQ7jywd2apMP5F8muZhskHYNcD7y7wp5E33rHI+/Q3YqbLND5ONceeQ1VAXAyeUeR8vx/I42VD6mMp6m5f9PErlCSHypvxz8kmKx4BbgW3b/Bzayu9BfM5rU2kv0zRvRtn/Jk3Tm8/vfp/KoY+neBaTnoPKspe2eyxtHPNqzd/BbuV32cd+ZE/Pj5MlsVeUa8AyJa/uL6+vNNJZ8vzepu1MIBstzivn8iGN70o5159j4Sd2/lzWa3c/U+njOzxMedHx/O7Ffgc6x/pZftTfk1VWti6QtD15cbiffFrkmT6WaakfE7U4WKCkd5f5d0QWsXeVRvBAXZKmkIFK1zu8Gqxe5rekC8lSrBMi4ph+lllsPyal5GWxgwWWZX9N3iA/HBFn97VMJ43k83sk6lV++3Puvlr1SDcGXEvWJa5NH50otRqYAETrXd1/qPw9Z8ipNxtY4xw7uBQTL6SVwATKz9PWepLdjAxMHsfVDGajioOTLioX3cavuyOrwUQ7gUllewMGKJLeSD7/Ppes/jHrpOvJKrO1yPZCz2s1MGloMUA5qvw9PyIeG3ryzawuXK3TZZJWIOvf1gWOiIhTBxOYNG1zkSoe8oL+R7IF9fHRo/EwXBzaXb3Ob0nvIhtWzgO2iIhp7QYmTdvrs4pH0u7kE1tPAS+PiH8M86G0mj6f313kap2xw8FJDyj7efg52eBvX+BrDDIwqWyzOUB5lBwl9k/AqyLi38OT+rbT5S91F/U6v0sw8QPgHcCvyNKUzzGIwKRpm9UAZQrZVfbawCci4vRhSfwg9Dq/xxoHJ2PHoIITSeeRrYCPHvYUtZ+WKYywRosAkr5B9v/wHFm9NujApLLNaoAC2RXxxMih5XvCX+ruqkN+S1qLHEuj0WfCoAOTyjarAUqQT/XcAGwfET173LoO+T2WODgZXqUrgwsiYt0eJ2URbnPSOx8lO6waR/4aPGmgwETSh7Wgh80J/Sx2C/l4WcNBvQxMbGyKiAeA3cigBPKR6MuHuM0ge0qeRQYmjwLv7GVgYmad4+CkR0og8jpydN3xwDWSTi4d1/S1/FdjQQ+bi3TMI2kLcoyS95D9RxwTEed37gjM+hcRNwHvJp+kmQj8SdlDbtskjZPUqKJcjexn4Q0lCDIb01rsiHPEaSk4kbSVpN9LmivpErJTnsa83bRgbJIbJb2iMu8IZT//cyXd1bg4lYvNkcp++mdJurT0WNhY7/uSZkp6VNK1kjavzFtN0uWSHpN0C01d5kp6vaRby7q3lqqOWoqIWWRnSqeRvwaPBP4s6TBJK7eyDUlbS/oW2fvsNmSHOjtFxAmdSbVZayLiUjIw+T3ZhfUvJf1Y0o6lmmZAyp4v9yeD7rPJHn0vBbaJiD93MOlmtSZparm//hF4XNnL643lPnxHqa5pLHugpDvLffge5fhJ9ddCT3TjyV8qjWHj9yIHIToB2JocgXIiOUzyAWQPc0uTYzhMByaU7WwIvKT8/zHygrNuWfZrwEWVfQ40NPPF5AVqObKr8fuA68u8VcneNfcnez18d3m/Wqs97/XqRQYpd7FgFMrHySqaY8hu8Lcsx/uaks9nkhf9qLzOAVbo9bE0HVdPenQcq6865ne5bnyWrL5snKt/J8c1+iDwBrJX5FcCbwY+SXaZ/lBl+QeBvXp9LCMhv0fzq1f5XbfPudxnbyfHqVmHrO6cTBY4vKW8X6Msuyv5I17A9mSP4VuXeZNo6uG3Lq9WMuGNLDps/I1kcPI/wBealr+rZMBG5YKyI7BU0zJ3AjtU3q9NBjyLdMPOwkMzL1GWe1ll/kmV4GR/4Jam9X8LTOl1Rrd4wi1JPuXwy6agY6DXbLLkZeNep7+fY6rVl3q0v+qc38ALgaPJHy2tnt+/J/tMWa7X6R9p+T0aXw5Onk/PVLJNIeQAgec3zb+K7DW8r3UvAw4r/9c2OGmlrmoCfQ8bD1lUe4Ckj1bmjSdLS66R9DGyf/7NJV1FPvbXGKXwx5Kqw8bPB9aSNJMc72RvYA0WNKpbney/f0kWHva5OpR389DejfmdHj10WER2P/8j4EeSXky2SdkGeDXZmRrkOAq/IcdQuA24ISKe6H5qzdoTETOBEySdArwWeBV5fm9CDib2HDmm0J/Ic/tm4P+arj1mlhr3wQ2AvUvfPw1LAb8GUA5K+jlgY7Jk5QXkd6zWWglO7qcMG1+5SKwP3E1mzokRcWJfK0bE94DvSVqRrLr5Ilm6MZ2M+m5oXqfUMe9BlrhMJUtMZpNFUg+Rj8euR3YD30hLQ/PQ3o35P2/hOGslIu4B7gEuLI0BG8HJePKxzCd7ljizIShB+PXlZWaD07gfTydLTg5uXqA8YPFDcqC+n0TEM5IuI++ntdZKg9jfkgHBoZKWlPQOst0DlDpjSROVlpO0q6QVJG0i6c0lc54ih+puPPZ3DnCicth6lENx71HmDTQ083yyZOE45fDhm5HtLxquBDaWtG9J6z7AZuTItSNZ9RhXBPbsUTrMzKxeLgB2l7SzpCVKQ/JJktYlf8wuTflhX0pRduplYlu12OAksmfRd5C9Ms4G9iEDBCLid8DB5JDys4F/lOUgM+QUshpiJrAmC8bC+DLZ78EvJM0lG8dOLPO+S1bF3Ed2835TU5I+QnYyNhM4D/h2Ja2zyP4VDieDm08Du0XEw4s7zrqStCkL8qZhSg+SYmZmNRMR08nahqPIIGQ68ClgXETMBQ4lHyKZTfZIPqQ+h7rF3dfXXKmfP6JpcgDrR8S9PUhSW0Zrz4p15fzuLud3d7mH2LHDnbDVmKQlyDY6i8zqZ7qZmdmI5+Ck3t4ErEK216l6EnhXKx1ZmZmZjTSu1hkhGsWKwJkRcWhPE9MGF4d2l/O7u5zf3eVqnbHDJScjz6BHLTYzMxsJHJyMPO4bwszMRjVX64wQlWqdJSLiuQEXrhEXh3aX87u7nN/d5WqdscMlJyPMSApMzMzMBsPBiZmZmdWKgxMzMzOrlVYG/jMbskqbGbNRx+e32fByyYl12pW9TsAY5DzvHud19znPxwA/rTNCuLW4mVlv+PrbfS45MTMzs1pxcGJmZma14uDEzMzMasXBiZmZmdWKgxMzMzOrFQcnZmZmVisOTszMzKxWHJyYmZlZrTg4MTMzs1pxcGJmZma14uDEzMzMasXBiZmZmdWKgxMzMzOrFQcnZmZmVisOTszMzKxWHJyYmZlZrTg4MTMzs1pxcGJmZma14uDEzMzMasXBiZmZmdWKgxMzMzOrFQcnZmZmVisOTszMzKxWHJyYmZlZrTg4MTMzs1pxcGJmZma14uDEzMzMasXBiZmZmdXKkr1OgLVHUvQ6DWZmZp3kkpOR46FeJ8DMbAzzNbiLFOEf4mZmZlYfLjkxMzOzWnFwYmZmZrXi4MTMzMxqxcGJmZmZ1YqDEzMzM6sVBydmZmZWKw5OzMzMrFYcnJiZmVmt/D+a1kuwq0PjSQAAAABJRU5ErkJggg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"Ritmo\\ncardiaco\\ndeseado\", \"left\")\n",
"d += (sum1 := dsp.Mixer(W=\"+\", S=\"-\").anchor(\"W\"))\n",
"d += dsp.Arrow().right()\n",
"d += (marcap := dsp.Box().label(\"Marcapasos\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(marcap.E).right()\n",
"d += (sum2 := dsp.Mixer(W=\"+\", N=\"+\").anchor(\"W\"))\n",
"d.push()\n",
"d += dsp.Arrow().up().label(\"Perturbaciones\", \"right\").at(sum2.N).reverse()\n",
"d.pop()\n",
"d += dsp.Arrow().right().at(sum2.E)\n",
"d += (corazon := dsp.Box().label(r\"Corazón\", \"center\").anchor(\"W\"))\n",
"d += dsp.Line().at(corazon.E).right()\n",
"d += (dot := dsp.Dot(radius=0))\n",
"d.push()\n",
"d += dsp.Arrow().right().at(dot.center).label(\"Ritmo\\ncardiaco\\nreal\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox*2)\n",
"d += dsp.Line().left().tox(sum1.S)\n",
"d += dsp.Arrow().up().to(sum1.S)\n",
"\n",
"d.save(\"./img/prob705.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "09eb610c",
"metadata": {},
"source": [
"Se ha establecido que la función de transferencia del marcapasos es $\\frac{K}{0.1 s+1}$ y la del colarzon es $\\frac{1}{s}$. El ritmo cardiaco normal es de 70 pulsaciones/min.\n",
"\n",
"Determinar:\n",
"\n",
"1. Si $K = 10$, ¿cuánto vale la constante de tiempo de todo el sistema? ¿Qué sentido físico tiene dicha constante?\n",
"\n",
"2. Si se produjera una perturbación sostenida de 10 pulsaciones en exceso, ¿qué ritmo cardiaco estacionario se alcanzaría?\n",
"\n",
"3. Suponer que el individuo puede tolerar durante períodos de tiempo no excesivos un ritmo cardiaco de 110 pulsaciones/min, siempre que en ningún caso se llegue a 130, aunque sea puntualmente. ¿Qué valor ha de tener $K$ para que un paso súbito de 70 a 110 pulsaciones/min en la consigna sea tolerable para el individuo?\n",
"\n",
"**Problema 7.6**\n",
"\n",
"Uno de los problemas más importantes con el que se enfrentan los ingenieros es el empleo óptmio de las fuentes de energía. Muchos ingenieros trabajan hoy en día en sistemas de energía solar para calefacción doméstica. Uno de esos sistemas emplea colectores solares y almacenamiento térmico, tal como se indica en el diagrama superior de la figura adjunta. El diagrama de bloques del sistema de control se presenta en la parte inferior de la figura:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "df8a8df8",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAABRCAYAAACTzaxEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQiklEQVR4nO3dedRdVXnH8e8vBEJkHrWBkMggRRRTVxW0qBFogQiCVAZlLGVauqQKCyiICEKQuiqFipUurIQQpjBoKcYSiouFhElgQSsyBgJhCklImIMQnv7x7Mt7crnv+94kb85939zfZ627knvPPvvse/Z573POPnufrYjAzMzM6jOs0wUwMzPrNg6+ZmZmNXPwNTMzq5mDr5mZWc0cfM3MzGrm4GtmZlYzB18zM7OaOfiamZnVbHg7iST9GpiwgstiS5oWEV+qe6Ou69q5nrtH7XXteu6ItupZ7TzhSpIfg9UBEaG6t+m6rp/ruXvUXdeu585op57buvJdmgxt+Q2GPxjX9Yrneu4ena5r13M9lqaefc/XzMysZg6+ZmZmNXPwNTMzq5mDr5mZWc0cfM3MzGrm4GtmZlYzB18zM7OaOfiamZnVzMHXzMysZg6+ZmZmNXPwNTMzq5mDr5mZWc0cfM3MzGrm4GtmZlYzB18zM7OaOfiaWe0k/UbSoeX/h0m6bRnzGS/pmYEtnXWKpAslfa/T5aiDg6+ZIelGST9o8flekl6QNHw58j5d0pTqZxGxe0Rcsqx52tAn6RZJCySNaHwWEcdExJmdLFddHHzNDGAScLAkNX1+MHBZRLxTf5FWLEmrdLoM3UrSWOBzQABfbnOdZT4BHIwcfM0M4FfA+uQPIgCS1gP2ACZLGibpHyXNlDRf0lRJ65d0YyWFpEMlPS1pnqTvlmW7AacA+0t6TdID5fNbJB3RqiCSzpc0W9Irku6VVC3TSEmTyhXTH4FPNa27Tcl7oaQHJX25smySpJ9JmibpdeCLkkZJulbSXElPSjq2kv7Tku4p5Zgj6dxeyvsHSXtW3q9a9sG49nZ9VzoEuJM86Tu08WGpo7PK/8dLekbSSZJeAC7u6zgcahx8zYyIeBOYSv4oNuwHPBwRDwDHAnsDXwBGAQuAnzZlsyOwNbAzcJqkbSLiv4GzgasiYs2I+EQbxfk9MI48GbgcuFrS6mXZ94EtymtXlvzhXhX4L2A6sDHwLeAySVtX8v46MBFYC7i9pH8A2KSU+9uSdi1pzwfOj4i1y/am9lLeycBBlfcTgOcj4v42vmu3OgS4rLx2lfTBXtJ9iDwOxgBH0d5xOCQ4+JpZwyXAvpJGlveHlM8Ajga+GxHPRMRbwOnAV5uaAs+IiDdLsH4AaCfQvk9ETImI+RHxTkT8GBhBBnXIE4KJEfFSRMwG/rWy6g7AmsA5EfGniPgtcAPwtUqa/4yIGRHxLvBxYKOI+EFJ/wRwEXBASfs2sKWkDSPitYi4s5ciTwEmSFq7vD8YuHRZvns3kLQjGUynRsS9wEzypKiVd4HvR8Rb5QSxneNwSHDwNTMAIuI2YC6wl6TNySbdy8viMcAvS3PuQuAhYDFQvWJ5ofL/N8hAuNQkHS/pIUkvl22tA2xYFo8CZleSP1X5/yhgdgms1eWbVN5X1x0DjGp8p7KtU+j5Tn8PfAR4WNLvJe3RqrwR8RwwA/hbSesCu5NXdNbaocD0iJhX3l9OpQWjydyIWFR5385xOCQMubOFgVJu+D8JrLoydiYZaiSNB6ZExKYdLkq3m0xe8W5N/kDOKZ/PBg6PiBnNK5S/pb5Euxsv93dPIpuAH4yIdyUtABodwZ4HRgMPlvebVVZ/DhgtaVglAG8GPNpLWWYDT0bEVi0LHfEY8DVJw4B9gGskbRARr7dIfglwBPmbekdEPNveN+4upVVlP2CVch8XsmVjXUmtWkqaj51ej8OhZqW48pW0o6Tby5nyS5JmSPpU/2vaiiDp66WjymuSnleO6dyxpm2HpC3r2NZKajKwC3AkPU3OABcCEyWNAZC0kaS92sxzDjC2BLH+rAW8Q16BD5d0GrB2ZflU4GRJ60nalLyv23AX8DpwYun0NB7YE7iyl23dDbxSOvSMlLSKpI81fjskHSRpoxLIF5Z1FveS16+ATwL/QO5Da21vch9+lLyvPw7YBvgdS/Y36M3yHIeDypAPvuU+yw3AT8gb85sAZwBvdbJcg5mkz5VX87CSgcj7OOA8spPNB8krj38DBv0fyFC8b9SXElCOqNyL7FdEzCI7Iq0BXF9ZdH55P13Sq2RP1e3bzPbq8u98Sff1k/ZG4Dfk1epTwCKWbCo+o3z+JNmx6r17qxHxJ3LYyu7APPK4OyQiHm61oYhYTAbncSW/ecDPyWZugN2AByW9Rn7/A5qaQKt5vQlcC3wYuK6f7zjgJH1F0rZ1b3cZHApcHBFPR8QLjRdwAXAg/bfGLs9xOLhERL8v8tI/2klb9wv4S2BhL8uGAaeSf6wvkmek65RlY8v3Gt7p71D3/gZOLNuYCXwPGDMQ2yZ/tF4D9u1l+QgyMD9XXucBI8qy8cAzlbSjyB+zueQP47GVZauQ9+ZmAq8C95JNkbeW8r9eyrF/SX8k8DjwEvmHO6rp+34TeIxsgoQcXnM/ebVzO7BdJf1JwLNlu48AOw/iel6nbOMNslPQLsCwOrbdjS/gNPLWSSfq+qqyjbuBbwDru547cgy0vb8HPMMOfNm1gflkE9nuwHqVZYeXH93Nyc4f1wGXlmUOvku+biZ7aS5P8N2NbDJsuU+BH5BnqhsDG5XAdmZZ9l7wJU+a7i0/ZquV+nsC2LUsPwH4P/K+pMhetRtU9t2WlW3uRF7RfJIM/j8Bbm3a1zeRrSYjS7oXybPpVcgz9Vn09LidTQne5RjaYhDXcyP4Vl9PA2cN5r/pofgqx89TwOc7VNdXNdXzW2QTveu53uOge4JvKd825GDtZ8qP//Vkk+fNwDcq6bYmhw8MHwrBt5OvZSz3gcALfSyfCUyovN8VmFX+P56e4Ls98HTTuieTzVWQV5x79bHvqsH3P4AfVd6vWY6BsZX0O1WW/4xyQlD57BFyXOGWZGDeheyo15X17Nf76vFIsrXlwsFa153eR93yWpr9PeTv+QJExEMRcVhkT9mPkU2W55V/q0MRniID75Drlj5EzAc27OPeaav6GNUi3Rj6HgIymgzk7VhimxHxWilnX8NPjm/a9mjyavdx4Nvk2MIXJV0pqVX5rYtExEURsUZEHNPpstjQsVIE36rIzhWTyCD8HPlj2rAZeWU85/1rDj4RoYF6kU29O5BN89e22NwiesZ0Lqs7Sj5797K8VX081yJdYwjIupXXWhExobJ8izbLtMQ2Ja0BbEDet22Ipm1PbNr2ByLiCoCIuDwiGg8JCOCf2ixHrwa4nlcDtiXreb9eNnnP8pbZls0A1/VmwOfJum7VqWx+rV/OlsqQD76S/rwMyt+0vB9NPtHmTuAK4DuSPixpTXoec9d143ojYm5E3BX5uL+7K4tmkM1mH4qIA5dzGy+T92l/KmlvSR8oQz52l/Qjsj5OLcMDNixpp7TIqs8hIGSP1DMlbaW0naQNyrI55D3ihsuBv5M0Tjl7ytnAXZG9elu5CDhG0vYl7zUkfUnSWpK2lrRTyWcR8Ca9Dz3piIh4OyL+WOp5emXRHOCfgY9HxJAbhqc+ngXdxrrvPS94ZRIRsyPid6Wu/7d8vJi87bYPrVuVBgVJsyTtUv5/iqSfd7pMdVsZhla8St4jPK48XWYhOfToBLLH6yiyF+zq5DCGb7XMpbu8QD7fdnJEPNpf4qUREedKmkP2Mr+Mnt7IE4H7yA5yjR+Kq8nOP815LFY+qP7HZE/nEeR911NLknPLZ9PJJx89DHylLDsduKQM5j8qIqYq5we9FliP7OTVeHxgq/LfI+lIcujDVmSAvY08hkYA55B9DN4ueR3V/t6pXQDXkC1BN3bqpFPS6eR9+IP6S2vL7CHgOODy6HkwCitgNOGAi4izByIfDbEHJ6ncJO47kZR3krOpw1awTu5v13V9uqWe+wu+Zby5YsnHQjanuYUcxrPUV0iSJpGd+U7tL23TesMH6ke8U3U9WP+eJc0CjoiI/xnAPMfS4eC7NPt7yDc7m9nAkjRa0nXKafbmS7pAOZXbqZKekvSipMmS1inpl3VKwYmSZpDjkDeX9FnlM5RfLv9+tpfybSHpt6Vs8yRdVlq9Gsv/QtJ9kl6VdBXZ6lVd/0hJjyufhnd9tdNc+R7flPQYOfYbSXtIul/ZAe92SdtV0p8k6dmyrUck7TwglTCE9HK89FlHTeufLmlK5f0OZT8vlPSA8klljWW3SDpT+RTDVyVNV97CgmydAlhYjrXPlHUOVz4rfIGkG1WejtVx7XSJxt3Va311cn+7rrtjX/e2bXJs8wPAv5BPuVqdnCqwnTHzF5FjpT9BjjPdpiw/naaHTwC3kGOOt6VnBMICcqz5cLLfxgJ6xm/fQl4pQQ75+mvyNsBG5I/ueWXZamTv9u8AqwJfJW8RnFWWd2Tcd6fqekVvt4/jpdc6KuvNAnZpPj7IUQjzyWkZh5U85pOzTzWOg5nkhBcjy/tzmo7D4ZXt7E0et9uU4+pU4PbBsL995WtmVZ8m+0mcEBGvR8SiyNmODgTOjYgnIodrnQwcoOWbUnBSRDwY2UT4N8BjEXFp5FSCV5D38vdsXikiHo+ImyKnmZtL9gH4Qlm8Axl0z4vsfHYNOT9ww4HALyLivsgp6U4GPqMlJ4f4YeSUhW+SnRH/PbKz4uKIuIQ8sdiB7Nw0AviopFUjYlZEtDsEbmXR8njpp476chAwLSKmRcS7EXET2Tt/QiXNxRHxaPTMQT2uj/yOJuvzoXKcnQ2MGwxXvw6+ZlY1Gngq3n/PrJ0x80s7pWB1fHVz/o1tbNL0GZI2Vo6xflbSK2SP+eqUg89GuQyp5NNyO+Fx38ur5fHSTx31ZQw5p3R1f+8I/FklzdIcZ2OA8yt5vUQ+Fe99x1XdHHzNrGo2sJne/6CU5Rkz31uvzurnzfk3ttFqar4flnW3i4i1yaul6pSDm5ROXNV8Wm5Hg3Dc9xDT2/HSVx31l9+lTft7jYg4p411Wx1ns4Gjm/IbGRG3t5HfCuXga2ZVd5MB7BzlGOfVJf0Vyzdmvp0pBacBH1FORzlc0v7ktHM3tEi7FjmMcKGkTchhhQ13kCcFx5Z89iGbRhu6atx3DXo7Xvqqo75MAfaUtKtyfP/qksarPMehH3OBd1lynP+F5BSU2wJIWkfSvm2WZYVy8DWz90TPNHtbkh2ingH2B35BTt93KzmcYxHtj5nvd0rBiJhPziZ1PNkMfCKwR0TMa5H8DLIj1MvAr6lM4Rc5reA+wGFkh639m5bfTM7kdS0ZNLagn3Hf5H3fC0p+j5e8oWfc9zyyKXRjsmd31+jjeOm1jvrJbzY5/egpZDCdTQbufmNVRLxBPk9gRmlm3iEifkm2RlxZmr//QD4RrOM8zncQ6uT+dl3Xx/XcPTq1v13P9Vqa/e0rXzMzs5o5+JqZmdXMwdfMzKxmDr5mZmY1c/A1MzOrmYOvmZlZzRx8zczMaubga2ZmVjMHXzMzs5o5+JqZmdXMwdfMzKxmDr5mZmY1c/A1MzOrmYOvmZlZzRx8zczMaubga2ZmVjMHXzMzs5oNX5rEkmJFFcQGF9d1d3A9dwfX8+DT7pXvtBVaCmulU/vcdV0v13P36MQ+dz3Xr619rgifEJmZmdXJ93zNzMxq5uBrZmZWMwdfMzOzmjn4mpmZ1czB18zMrGYOvmZmZjVz8DUzM6uZg6+ZmVnN/h9PX1Zy3yuIZgAAAABJRU5ErkJggg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1\n",
"wbox = 1.1\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += (sol := dsp.Box().label(\"Sol\", \"center\"))\n",
"d += dsp.Arrow().right().at(sol.E)\n",
"d += (colec := dsp.Box().label(\"Colectores\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().right().at(colec.E)\n",
"d += (ventil := dsp.Box().label(\"Ventiladores y\\ncontroladores\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().right().at(ventil.E)\n",
"d += (aire := dsp.Box().label(\"Aire\\ncaliente\", \"center\").anchor(\"W\"))\n",
"\n",
"d.save(\"./img/prob706a.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e8490899",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAB2CAYAAAA3HgPSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWNklEQVR4nO2debRcVZWHv18GpvAgCYTRMCVBwpiADNpAIoOADKERsBUaghM22IACyhJlIc3kgKDigIggtsyK0BAbg0EQBGKjQWMQGmhCCIEESEISEgTZ/cc+ldxXeTW+qlevbu1vrbuq7j3nnrvvuXV+de4Z9pGZEQRBEOSDAa02IAiCIGgcIepBEAQ5IkQ9CIIgR4SoB0EQ5IgQ9SAIghwRoh4EQZAjQtSDIAhyRIh6EARBjghRD4IgyBEh6kEQBDkiRD0h6RJJZ1QRb7qkHfrApKAGJN0tydp0u7vV+dcORBmtDnWC7xdJw4DXgGX4H9kC4AIzuyaFjwBmAKPNbHmFtI4FPmxmH2qq0UFNSGrrH7KZqdU2tJJURp8HDjOz+zPHfwoMAU4mymhVdIqovx+4xcxGpP2PAtcDm5jZK5LOBrY1s09WkdZawIvADmY2r5l2B9VTEPV2E8d2tbsZSLoMGGVmR6b9LwNHAvsApxJltCo6pfllHPDHzP79wEBgWNo/JB1biaRtJN0l6RVJiyVNBTCzFcBjwAeabnUfI2mQpHUldUka1Gp7go7jm8BBkkZJOgb4FHC4mb1BlNGq6ZSCOx5/yEgaClyS9p9O4TsBTxadcz1wIzAJGAzslgl7Atileeb2DZI2Ao4B9gDeA2zHqj96k/QUnk9/AG41s7ktMTToCMxsrqQbge/i5e0gM3sxBXdkGa2HTqqpny7pdWAhsBFwsK1qexoKLCk6ZxRemx9oZivM7KFM2JJ0TlsiaS9JPwNeAK4ETgC2x38Pb6QN4N3AR4HLgdmSbpM0sc8NDjqJbwIHAaeaWfbteigdVEZ7Q+5FXdKawFhgZzNbDzga2At4KxNtIdBVdOpxeA3gRUnXSBqeCesCFjXN6CYhaT1JVwMP42I9EPgvvL1yL2AdMxtiZkOAtfHa+8nAbYABHwLuk3SDpA1acQ9B7lkDeBP4RdHxjiijjSD3og7siP9IngUws5/jvezZnvE/A9tmTzKzaWa2P16D3QWYnAkeCzzePJMbj6R9gJnAJ4C/A18FtjazI8zse2b2aHZUgZm9aWaPmdkPzewYYAvgfLwW/xFglqSD+/xGgryzCzDTzN4uOp77MtooOkHUx+M/kuwwnynAEUX7Ewo7ko6SNEaS8H/8YfhwqkLNfzdgatq/TtJ1zbyB3iLps8A0YCTePj7ezM4xs+erTcPM5pnZV4CdgQfwJqy7JV3QDJuDjmUcqawVkesy2kg6QdTH4f/yWf4bODANfQLvcPmgpLXT/t54T/sS/Md0qZlNS2FHAL/NdOCMBLJtef0KSfsB38A7xZ8DJpjZrHrTM7NngP3xWv8A4MuSjuy9pUEAeI17Rg/Hc1tGG01HjFOvBkkXA/PN7IoK8R4FPm5mMyWtgb/i7Wxmb5U7rxWk0S2zgA3wJqg1gTuAY83s73WmORC4FvhXvF9iMLAU2MnMnmuA2XXRruO929XuVpDHMtoMQtRzSnotvRXvO7gXOAd/HR1GncJeJOjL8LHDp+Gdz78BDrQW/aDaVRzb1e6g/xKinlNSk8jt+OvpTmY2W9KuuMDXLOw9CbqZ/S69DfwV2BCvHf244TdTnX1tKY7tanfQf+mENvVO5az0+WUzmw2Qxv0egA8PmwTckl5Py1JK0FOa84HPpahnpjeEIAhaRNTUc4ikQmfT68DmZra0KLzqGns5Qc/EGYwPE90EmJh1yNRXtGuNt13tDvovUVPPJx9Lnz8pFnSovsZejaCn9N4Cfph2P96QO+hHhMvXoJ0oK+qSlma2dyQtz+wf11dGNhJJz0k6oNV29BZJ25cRkPelz9tLnV9J2KsV9AyFGYDvKxOnV0jaSNK+jWzikbS2pK9IelzSQkmzJd0qaa8UPgJ3o3BVFcl9A4hx+4CkIZIOSr+jSnFDZxpIWVE3s3ULG/56fXjm2M/6xsTqUR94FuyLa1TJe4GZqXZ4SmGKdBLmnVOcrO8MJE3MTsIoJex1CDr40Mk3gVFyp2nNYFN8bPLTks6TtFVvEpM0BB8RtBvwETMbBuyQjhU8/E0GplTy4Z24E3i/pE17Y1dOGILPB3k+velsVypi6EyDr2FmVW34xJUD0vcB+BC5Z4BXgVuA4SlsK9xPyEnAHFwwPg3sjk8CWgRcmUl3Mj4x4DvAYuBvwP6Z8PWBa4B5wFzgQtyBT/bcy/FFMC7EnfxMS3a9AvwMGJri/xR4B1iOj63+PDAReKHMvZ6P+z75T7yN+hO4V8OH073Mw51irVFtXjZiw5s5LLO9mZ7DKWn/qR7OmQhc18PxXVP+GfDLdK+W8mifGmx6NJ03oUn3vEvRPVt61icU9mtM7zvp9zOoTJxpwPGZ/W2Au9JvazEwtSj+VODEGmyo2e522PAZx8XP6mHcl9DQMudly17oTB06U8tDyhpwBvAI8C58QstVwI1Fmf0DYC28xrMCF4uNgM2B+aSCnzLsbeCz+ESWD6dMLzy8X6b0h6TzpwMnF5377/iMybWB0cCBya4R+JT2K3q6j7RfTWa/hTvrH5CusRvuAGtQut8ngDOK0rib1X/Ufbm91sMznEgPop7CssJes6CnNF5q8T1XLY7AcNwHTtl7xFfJ2j2z/yDuAG0g/vv+p6L43wa+WYMdLc2vFm5/CJ3pvc40UtSfoPu/3KbJoMLFDR91UQh/FV9eqrD/84JxKcNeJI3EScem46/+G+M10LUzYR8B7suc+3wFu48E/tTLzH6gwjXOAG4vOtZvRB2vQc/A/ce/lr7PwP1VF+IMxGughfN/R41vH3htoqViUYOtRwMvFR2bjteKlgP7pmNvAdsV3eNppfIGuAj4cYh6xe3PoTO915metnrbbbYEbpf0TubYP1LmFHg58315D/vrZvbnWrI6MRvYLF1nMDAv0zc2AH/dKpD9Xpga/218CayuFH9hVXdVmuJrbIv7fX4PsA7+I3ssG8fMDu3lNVdD0kj8n3tb4IP03Cn5F3xBgWcytuyZzp8ITDazyUXpFtrQD8Wfzdu4b41bJNUy8/RxfFjjYWbWkMWUU/v8e/E3idF098RX4Enc93stbIIX8pWY2R6pY3Q+7tsGVnf5ehxwLnCepDuAs83stUx4XS5frY+HNDZjKKWkdfDf5J74cNkze4j2PPAT4PtVJBk6U0FneqLeIY1z8M6zoZltLat/ZZzNi0Y0bIEXuDn4P+iGmeusZ2bZUR/ZhwS+qpGxyn/68YDKxF+GZxiwUuBGFMUpPuf7eJvcmHSNLxZdoymY2Rwzu9XMLgKyMzdfAC7Ghe3AdOzdkio+3x46RQ/CaxULqWGCUqLwXJ4pG6sGzGyRmf0q3fMVmaDF+Ovye3E3q7XyPDCyh9EZ44A5GaHu5vLVyrt7hQ52+Wpmb5jZvelZfS0T9AbukGs/3N3zeVbd2qGhM3XoTL2i/gPgIklbJgNHSJpUZ1rgbVinSRosX5twLD7iYB7wa+Ay+QIPA+TrF04ok1YX3h68SNLmwNlF4S/jnV0FngLWknRomkTzJbydrBxdeGfG0tSr/29V3mcjWY53zhwIbGVm55rZU2b2Mt7R0wWMKZdAqVEuVsfMU0kb422fS/E8bQbvAPfgr8abmtmnzeyRotpXtdyLu1C4QtJwOVvjY/yzorzS5avKuHtN4d1cvgY8gOfnJmZ2opndZ2bvVDopQ+hMHTpTr6h/Cx++9WtJS/DOjD3rTAu8zXcM3ot8EXC0mb2awk7AV0OZhYvMbXjbWim+gr+qL8bbtYtXULkE+JKkRZLOMrPF+IiRH+FiuAyv+ZbjLHzloCXA1cDNVdxjQzGzG8zs+FQz+kdRcOEVbd+ic35baHqpNGyxDmHfO33+scaCWzVm9hczO9jMbrLqhhiWS+sN/A/xXXhtaAE+rv9ZvCO0QNblazl3r7C6y9eOxczmm9kEM7vWzIqXoauW0Jl6dKZSo3uzN/z19cFW25GnDR/mZcD0EuEDcbEyKoxyYfXhjqU6CO9JcT7Xons2augorTHti6lm1IGLxo79xe7+eN1WbZ2kM+EmIJ/cjNc2dpe0ezag1olFVkWNXdIYVg0pu65xt9E/MLMvWgUf3inenmY2s1K8IGgmIeo5xLxp4dq0+7VCh2mdM0XLCntqXy50it1k3UeCBEHQx4SXxpyShub9Fe9hPxUfKVKzoBeluZp3R3wRjhvwdr8drYZ1TxtJM4bo9QWtsrtd8yuoTIh6jpF0NL760TLgPuAw6hT0TJpZYb8Xb3MfDnzKzK5uhN112tWWIhWiHjSaftv8Il8B/MJW2wEgabKkB1ttR62Y2W24H4ohuKAvp4KgSzpV0oy0bdZDmoWmmMXpczg+E/VHTbiFoEPpTfmXZJJGN9qmdqHfinrQMD4J/F/6XjwbbzXM7LtmNi5tpYbmbZzSAp99+S8Wr3xB0C8IUc85ZvYmPvvxdnzK9K2Sbk6ThWpC0jBJ1+BjtIfjzS+jzGxZI20OgqB++o2oSxov6Y+Slki6Gfe8Vgg7LDUHLJL0e0k7Z8K+IGluOu9JSfun4wMknSPpGUmvSrpFyed4Cr9V0kuSFkt6QJkFJyRtIOlOSa9Lmo672cza+i1Jc1L4Y5L2aWbe9BYzW4E7sPoM3qZ+LDBb0k8k7ZVGsPRImmk5XtIP8ckSH8OnVH8eONh6WFkpCGqlXPlP4SU1oEK6h0r6UyqrcySdXyH+pHSd15N2HJyOnyTpiWTfs5JOzpyzoaS7km2vSfpdZsRZQYOWSJol6Z9rzZuaafVA+fTWvgbuXKfgFvNo3BvbhXhH3Hx8JtlA4ETcu9mauK+TOcBmKZ2t8JojlHHbmcI/hk/DXRP3KTIjE3YT7rt5CLAjPgPswUz48cAGuIOdM3GXs2u1Oh+rzOtt8Fl677DKY95C4Df4yj3npu1r+ISiVzLxDJ9OPbbV99HDfbXlZJpW2d2f8qtc+U/hJTWgzL2NTt8n4g7uBuCLx7wMHFnivD3wvqIDU/zNSR46cWd3o3DfKxNwfza7prBLcJcGg9O2D6sGoRyDOw0bgLv7XYa7uGhefrb6gaYb35fV3WL+Hhf17wP/URT/yZSxo9PDPgAYXBSnpNvOHq4/NP0Q1k8/mmJ3qxdTZjZaEsVdWp2PNeb5NsBXU75bhW0BPmV7u1bbXeZ++o1ItYPd/Sm/ypX/9L2kBpS5t9Elwq4ALi8RdlWpsB7i/hI4PX2/AB/i2+M1i86bAUxqZn72l+aXzejZLSa4W8wz06vNIkmLgJF47fxpvEZ+PjBf0k2ZERtb4m47C+c8QeoolDRQ0qXpteh1/F8fYEN8XPcgurvBnJ35jqQz06vY4pT2+unctsHMnjWzL+C1kXfh/qBvz0S5Bx+DvhWwkZmdbmZ/62s7g46gXPmHMhpQKWFJe0q6T9ICSYvx1ZFKldWRlPAwKukQSY+k5pVFuOvrQjpfx9cq+HVqmjknc94JmWajRfibf1O1or+I+jx6dosJLq4XWXf3m+uY2Y2w0rHV3viDN7z2WTivlNvOj+IzIw/ABXmrdI7wWunb+AMutoXUfv4FvF16mJkNxV/Z2nK8rzlzzewOuo+M2QJ3yD+7qLAFQaMpV/6hggZU4Aa8uXGkma2PN5OUKqtzKOo/g5XeN3+ON09unMr8lEI6ZrbEzM40s22Aw4HPSdpf7l3yarwva4N03swy128I/UXUH8aF9DRJgyQdhbdvgWfKp9M/ruSrlB8qqUvSuyXtlzJ9BT4OuzDUrpzbzi68s+9V3MfxxQVDzD0e/gI4X9I6krbH2/DInPs2Lv6DJJ0HrNfg/Ohz5A75s4tujMXXe2wr5GOU22ZrdX71E8qVfyijAVWk3YWvArZC0h54ha4U1wAnJUEeIGlzucvbNfC+twXA25IOYdXC5IVO3NHpT+l1XIP+gffJFZovkXQSXlNvKv1C1M1X1jkK96S2EO9Q+EUK+x98rPWVKexpVi1MsCZwKd6Z9xLuL/mLKayc287r8de7ubirzUeKTPoMPvzvJdxB1bWZsHuAX+H+kWfjfyZzaH9O7OHY5L42ohdMabUBvaCdbe815cp/Ci+nAZU4BbggacB5+ACIUnZMxz2cXo6/fd8PbGnuOvi0dO5C/I/hzsypY/DhvUvxP6jvmbu5ngVclo69jHfYPlSl3XUTbgKCgqOv5/C29SyL8J76FX1tU9BcCm8JFm4Ccke/qKkHLWc/Vhd08FFBR/StKUEQ9IZ6F54O8sUWrHotPTZ93oWPxd2kJRYFQVAX0fwSdCPTebeBhW/03BLNL/klml+CUsS/fRC0ISHqQSnebLUBQRDUToh60CPmS+IFQdBmhKgHQRDkiBD1IAiCHBGiHgRBkCNC1IMgCHJEiHoQBEGOCFEPgiDIESHqQRAEOSJEPQiCIEeEqAdBEOSIEPUgCIIcEa53g1wg6W58MeB2ZIqZHdpqI4J8EK53g260q0vWdl/vs6/zu12fc1CZqKkHuaLdRKrd/4yC/ke0qQdBEOSIEPUgCIIcEaIeBEGQI0LUgyAIckSIehAEQY4IUQ+CIMgRIepBEAQ5IkQ9CIIgR4SoB0EQ5IgQ9SAIghwRoh4EQZAjQtSDIAhyRIh6EARBjghRD4IKSLpE0hkV4kyXtEODr7tGI9MLOoMQ9aBjkTRMkknauuj4dyRdnb6PAE4ArqqQ3DeACxpgkyS9R9KVwNO9TS/oPELUg05mHLAUeK7o+I7AjPR9Mr4y0fIKad0JvF/SpvUYImkTSWcBfwH+AJwKDK8nraCzCVEPOplxwCxbffmvHYA/pe+HAPcXAiRtI+kuSa9IWixpKoCZrQAeAz5Qpy0vAF9P1y4wRNJDku6WdLKkKK9BRWLlo6BHOmRFnvHAzOwBSRsDGwJ/Tod2Ap7MRLkeuBGYBAwGdsuEPQHsUqctA0scf1/6/CDwA6mtFnYKWkCIelDMAmBEq43oI8YBoyVNyhwbCPyvmS1N+0OBJZnwUSnOwFQ7fygTtgSoq/mlRSxotQFB4wlRD7phZhu12oZ6qPXNQtKawFjgWLwNu8ApuHAXWAh0ZfaPA84FzpN0B3C2mb2WwrqARbVZvpJJePv94awql8vMbN060ws6lGijCzqVHfHf/1Qze6GwAWNY1Z4O3gyzbWHHzKaZ2f7A9nhTy+RM3LHA4/UYY2Z3mtlRwGbA6UU2BEHVhKgHncp4vJN0adHx3Vk18gVgCjABQNJRksbIG7a7gGGFuKnmvxswtTdGmdkCM/u2me0K7NmbtILOJJpfgk5lHN2bXQpj0reku6hfD8yQtDawN3AlsB4wF7jUzKaleEcAvzWzFxtloJn9tVFpBZ2DVh/NFQTtR6FN3cwaPjxE0sXAfDO7okycR4GPm9nMUnFKnNc0u4POJEQ9yAXtKo7tanfQf4k29SAIghwRoh4EQZAjQtSDIAhyRIh6EARBjghRD4IgyBEh6kEQBDkiRD0IgiBHhKgHQRDkiBD1IAiCHBGiHgRBkCNC1IMgCHJEeGkMckWHLMMXBCWJmnqQF6a02oBe0M62B/2M8NIYBEGQI6KmHgRBkCNC1IMgCHJEiHoQBEGOCFEPgiDIESHqQRAEOSJEPQiCIEeEqAdBEOSIEPUgCIIc8f972xbb+0SK3wAAAABJRU5ErkJggg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1.25\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R(s),$\\nTemperatura\\ndeseada\", \"left\")\n",
"d += (sum := dsp.Mixer(W=\"+\", S=\"-\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(sum.E).right()\n",
"d += (proc := dsp.Box(h=hbox, w=wbox).label(\"$G(s)$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Line().at(proc.E).right()\n",
"d += dsp.Dot(radius=0)\n",
"d.push()\n",
"d += dsp.Arrow().right().label(\"$Y(s)$,\\nTemperatura\\nde la casa\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox*1.5)\n",
"d += dsp.Arrow().left()\n",
"d += (medidor := dsp.Box(h=hbox, w=wbox).label(\"$H(s)$\", \"center\").anchor(\"E\"))\n",
"d += dsp.Line().at(medidor.W).left().tox(sum.S)\n",
"d += dsp.Arrow().up().to(sum.S)\n",
"\n",
"d.save(\"./img/prob706b.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "a2782fc2",
"metadata": {},
"source": [
"La dinámica de los colectores, el almacenamiento térmico y la propia casa viene dada por $G(s) = \\frac{k_1}{s^2}$. La dinámica de los instrumentos de medida viene determinada por $H(s) = \\frac{k_2}{\\tau_1s + 1}$ . Suponer que $\\tau_1 = 1 \\mathrm{ s}$ y $\\tau_2 = 0$ (aproximación).\n",
" \n",
"1. ¿Para qué valores de $k = k_1 k_2$ el sistema será subamortiguado y para cuáles sobreamortiguado?\n",
"\n",
"2. ¿Para qué valores de $k$ la temperatura de la casa, al variar la consigna, no discrepará en ningún momento más de un 5 % del nuevo valor estacionario a alcanzar?\n",
"\n",
"3. Suponer que la temperatura de la casa está estabilizada en 22 ℃. Si la consigna se cambia de pronto a 24 ℃, siendo $k_2 = 1.1$, ¿qué temperatura se alcanzará en la casa?\n",
"\n",
"**Problema 7.7**\n",
"\n",
"Sea el sistema cuyo diagrama de bloques se presenta en la figura adjunta:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c461f1f0",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAREAAAB0CAYAAACi2gbTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAANbklEQVR4nO2de/Clcx3HXx9bu8iyK9atWJc17n7upuSSXKKhqMQ2rCRNq7GZmElhqFbtRG4RchmiaGwy/MrsYhVNRLskhhi5rUJYu1kJn/74fo/fs8+ec37neb7n9vx+79fMM3Oe7+18vs/z/b7P937M3RFCiLKs0GsDhBDVRiIihEhCIiKESEIiIoRIQiIihEhCIiKESEIiIoRIQiIihEjifb02QPQOM7sVOKDXdpRg0N0P7LURImBasTp6MbPKvnx3t17bIAJqiYhKVcgqC99IRSKSiJmNA8YBbwNvuvu7PTZJiK4iESmIme0EHAjsAOwIrJ3xXmpmC4AHgD8Av3H3/3bdSCG6iMZEWsDMxgJTga8RhCPLO8CbBEEel/N7CbgcuMjdn+20nUWpdQ2q2J2pks0jHYnIMJjZ9sBVwNbR6RXgWuCPhBbHk7UujJl9ENieIDSHAdvGOP8BTgZ+2k/dnSpWyCraPNKRiDTAzAw4FTgNGAM8CXwXuMHdl7YYf1fgJOAz0flO4Ah3/2dHjC5IFStkFW0e6UhE6mBmKwB3AbsBDpwPnOLub5RM77PARcCawL+Bfdx9fpvMLU0VK2QVbR7pSERyxBbEJcCx0elsd/9mG9LdEbgHGAu8CGzj7v9KTTfRpspVyCraPNLRsvflmUoQkLfj/YlmdmRKgmY2GfgVQUDeACYBV0XBEqLSSEQymNk6hK4LwHHAtwEjVPhSQhIF5E5gMnAvsB3wKrA/cHSaxUL0HonIspwPTAQGgSvdfSYJQlJHQPZz98eBr8cgPzazSe0xXYjeIBGJmNlGwKHAf4HjPA4WlRWSBgKyKHpfB9wGrAp8uX25EKL7SESGOI4gFNe7+3NZj6JCMoyAEAXqnHj7VTMb06Y8CNF12ioiZnaWmc1oIdx9ZrZlO787hTilWxufuKhemFaFZDgByTAXeAL4MLBPgvl9SVXLwkijK+/B3Vu6CGMFDiwhzDA8DRyT8V8TeB5YqYW0Pg/c2Op3t+sCPgFMrOO+aczbQuK0d3TfE7gqF/aUGPZd4Mic32Tgqej/J2C1YeyZFcOe0cE87wKs38DPiQ2jgmmuBJwBPEgYJH6aMPu0a6fLQlmbq3ARVjhvWiD8RGAxsEfO/RpgdrfqZJEM7gW8lLk/gjANuka8Pwm4rMW0ViQsH1+nyy/pdsI+l18SZkfGRPfDY+G8ORd+ORGJ7ssJSVEBiXEOi+Fv6WCeZ0U75wJfBFbO+BWukMAHgLuBW4AtotsqwFeA0zpdFka4iHwj5u8ewjKDVsrQ2cBNmftTCdsxVu5WnSyawdsy9+vFDE+J93cAX8zF2SgWtpeBRcCcjN8c4Kguv6Tba4WQoZbHD4GfxfvTc+Hrikj0ywrJiUUFJKaxSYzzXAfzPCuX59djfmurcb1gehfEQv6+JmGWKQvNykHRsjBKRKR2LSXs09qH+INXJ856MdzGwOeAZ4F1672H4d5F2TpZJINXAzPj5wnx/n6GVr2+BOyUi3M3MJ2w92RF4KMZv/OBc3Lhb809xG5fx0U77gUWEMYsXomfFxDGN7L2npKL37KAxPir9Di/hSoksDrwFvCxYcItUxaalYNGZaFJ2j1/Xj28Bhs8kyuA38Xnvn2j91CmTrZyFRlYHQBOMLPXCf3gScD+Hr+dICyLc3E2jsaOcfc33f2ejN/iGKefeBfA3Xdx9wHC9OvN7j4Qr9ty4a8jPIsaV3r9QdRGvJNkbff5OPCKu/+h5hAH5F4zs6Vmtnt0nsCyZaFZOYD+LAv9SKMVzucA+wHT3f0vGfcJdKFOtiQi8fSuzQn7PVYFPkvYofq/TLBXgfG5qFOBg4GFZna5ma2e8RsPvJYN7O4Huru18wJ2JpwD8p0G2VsKPB4/r9zK84jPZDJhFmYioQkJcHHBBWm171vU5jxvBhwV81zvHJN3gd8WsLPG2oQu4Hu4+87AFMKv2sPROV8WmpUDqFMWhqPd5aTF59r27yZ0Lw4nvKsHG2R3HjCNcBhWPcYS1jfNzrkn18mWaKW5QjjFawnLzlw8BHwpcz8XmNog/iRC1+fEjFuvx0R+D3yJsODrxOh2SS78ntQfWJ1MbgyEJrM2TezZPcZ5oIN5zo6JPEI416TWZy7anTmI0EQek3PfB3hmuLJQrxwULQtFbW7zs+zod7PsmMhTwOnAhi3EOxq4v457V+pkq92Z7YCHPX5TZDAWquz9HrUbMzvEzKbETWbjCb/YC6LfOIIwzWnx+9vFM8D3CIPBu7v7Fe7+OuFhEm16D3ef5+7Tsm6N1oF4uZWtte97oFx2WuJV4GLCVO+W7j7L3RcOE6cRcwlN3nPNbHULbEgQ4+yv6HtloVk5iP69Kgv9yBLCAVh7Ahu7+xnu/lQL8QbIPNMM3amTLSrkhcClObc9CSd2rRjv1wCeI85JE/ppCwkP5jHg2EzczwGze/Fr0iB/4wktiLeACU3CTWaYWRgKtEgIzU8nDuj2IN+Ff1kJfepfE44zeDkWwu+TWYuSLQvNykGZslDG5l4+ry7ZNQ84vo57V+pkuzMzE5jRQrh7ga16/fBzNs2NheSEBv7DCkgm7LBCAqxDGFN6G/hQj/LcsUrRqbIgEemP95C9dChRxMwOAW4kDLJu5pkHU2Apeza9Uwi/0A5Mc/erc/6nEVZ9znb3Q9uXk9ap4gE/vbS5is+rG2gD3hA3E5YIb0pmZ20ZAQHwJmMkZrYeYTAXwniFEJVFIhJx97cJy4QBzjaz9csKSCbN5YQkc/ziaoTFdbe3LRNC9AB1ZzLECj4b+DRwH7AWsAElBCSXbrZrcy1hD8siwmzJ8+mWl6OKzXN1Z/oPiUgOM1sLmE8Y+IQgJvs2EhAzm87Qoc4HeIPp04yQ1Jjq7te1x+pyVLFSSET6D3Vncng4gf1TxCXwhNbDB5uE/4kPLYtvJCDjCPtkalzeawERol1IROrgYf/BAGFOfRfgr2Z2vJkV/u/i+N+99wPfIgjSDHfXkYhixKDuTBPMbA3C1vcvRKdnCYOiV7j7C03ijSXsT5jO0IrBJ4Cj3f3uzllcjCo2z9Wd6T8kIi0Q15D8gLDRrMZThOXqjxI28b0fWJewdHgbwqYoCKt6LyacVVLqH/Q6RRUrhUSk/5CItEg8h3VvQutiP8Ku1WY8BFwKXONhf07fUcVKIRHpPyQiJYhjI1sQWh2nE6aBAc4krCuZX3Y6uJtUsVJIRPqPwgOF4r2FaQ+Z2RKGBATgLXef1xurhOgNEpE08tv9p5nZTK9Y8672CytEGTTFW5I4RnJUznkT4CM9MKcsg702oCRVtXtEopZIeXYn7KnJM41wGnrf4+6NjtsTomXUEinPtAbuh5lZy2e1ClF1JCIliF2Zd4Abcl43EA5A3qzrRgnRIzTFm4iZ/Zxwgram/kY4muKtj1oi6bRykK4QIxaJSDo6pVyMatSdaQNq5o4O9J7ro5aIECIJiYgQIgmJiBAiCYmIECIJiYgQIgmJiBAiCYmIECIJiYgQIgmJiBAiCYmIECIJHUo0ijGzW4EDem1HCQZ1oFL/oL0zbaCqeyqqfLaqTnvvH9QSEZWqFFUWvpGKxkSEEElIRIQQSUhEhBBJSESEEElIRIQQSUhEhBBJSESEEElIRIQQSUhEhBBJSESEEElIRIQQSUhEhBBJSERERzCzs8xsxjBh7jOzLbtkkugQEhFRCDObaGZuZhvm3C8ws8vi5zWBI4FLhknuR8CZbbZvbDvTE8MjERFFGQCWAP/IuW8FLIifpxEODlo6TFo3A3uZ2TopBpnZimb2eTMbBM5LSUsURyIiijIAPOLLn2a1JTA/fv4kcFfNw8w2MrNbzOxlM1tkZnMA3P1N4AFg36JGWGBnM7sIeAG4Pn7vmKJpiTR0KJEoynbAw1kHM1sLWAN4KDptDTyWCXI18AvgYOD9wA4Zv0eBbUvY8Tdg8zrux8ZxlvnATe4+t0TaogASkTYySk7dGgA2MbODM25jgL+7+5J4PwFYnPHfOIYZE1sf92T8FgNlujP1BKTGR+I13awyh7ZVFnVn2sNLvTagG5jZOELlnUoQk9p1MUPjIQCvAuMz91MJrZCFZna5ma2e8RsPvNYhkzvBqHjXRZCItAF3n+TuVrWrRFa3IpSZOe7+XO0CpjA0HgKhW7Np5vnc4e57A1sQui7TMmE3Bx4sYctawDcY6kLVuKzDz21SCVtHNBIRUYTtCIOqS3LuO7FsS2QQ2APAzA4xsykW+hXjgYm1sLFlswMwp6gh7v6iu5/r7ttGu84DXi6ajkhHYyKiCAPAn7MOcU3IBiwrIlcDC8xsJWA34EJgVeB54AfufkcMdxAwz90Xphjl7guAGWZ2crRFdBH978woppP/o2JmM4EX3f3cJmHuBY5x94cbhakTR//90mdIREYxVayQVbR5pKMxESFEEhIRIUQSEhEhRBISESFEEhIRIUQSEhEhRBISESFEEhIRIUQSEhEhRBISESFEEhIRIUQSEhEhRBI6CkCMlmMdRYdQS2R0M9hrA0pSVbtHJDoKQAiRhFoiQogkJCJCiCQkIkKIJCQiQogkJCJCiCQkIkKIJCQiQogkJCJCiCT+D6pJsFAX+2GCAAAAAElFTkSuQmCC\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1.25\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R(s)$\", \"left\")\n",
"d += (sum := dsp.Mixer(W=\"+\", S=\"-\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(sum.E).right()\n",
"d += (proc := dsp.Box(h=hbox, w=wbox).label(\"$G(s)$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Line().at(proc.E).right()\n",
"d += dsp.Dot(radius=0)\n",
"d.push()\n",
"d += dsp.Arrow().right().label(\"$Y(s)$\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox*1.5)\n",
"d += dsp.Arrow().left()\n",
"d += (medidor := dsp.Box(h=hbox, w=wbox).label(\"$H(s)$\", \"center\").anchor(\"E\"))\n",
"d += dsp.Line().at(medidor.W).left().tox(sum.S)\n",
"d += dsp.Arrow().up().to(sum.S)\n",
"\n",
"d.save(\"./img/prob707.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "9a7d845f",
"metadata": {},
"source": [
"donde $G(s) = \\frac{K}{s(s+1)}$ y $H(s)=1+K_ms$.\n",
"\n",
"Determinar los valores de ganancia $K$ y de la constante $K_m$ para que la respuesta a un escalón unidad tenga un _overshoot_ de 0.2 al cabo de 1 s.\n",
"\n",
"**Problema 7.8**\n",
"\n",
"En muchas ciudades se han realizado esfuerzos significativos para reciclar los envases de vidrio. En la figura siguiente se representa un diagrama de bloques simplificado del proceso de reciclado de una ciudad:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a38fce68",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAACgCAYAAADZ5c8KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfOUlEQVR4nO3deZhcVbnv8e8vgQQCYRJkUAIyaQhgRBEnLlGRWTyi4oBAFL1OHJy4To8eEQe86hE9RwQuR0RQQPQ4AgoIBo+oILMMDsgMARIggMzE9/7xrqJ3iq7u6qa6967K7/M8++mqPdXa1bvWu/faa1BEYGZmZs0wpe4EmJmZ2RAHZjMzswZxYDYzM2sQB2YzM7MGcWA2MzNrEAdmMzOzBnFgNjMzaxAHZjMzswZxYDYzM2sQB2YzM7MGcWA2MzNrEAdmM5t0kg6X9IEu1rtQ0pxJSJJZYzgwm1lPSdpB0r2S1Db/HEkfkbQOsD9wTBe7+wpw2ESk06ypHJjNrNfmApfFk4eumwtcCswHzoiIh7rY18+Al0tav5cJNGsyB2Yz67XnkQH4CZI2BtYq83cDzmtbvomk0yQtLnfbZwNExMPAxcDOk5FwsyZwYDazXpsLXNI273nALRGxGNga+Evb8hOAXwDrlunQyrJrgOdORELNmsiB2cx6RtKKwBza7piBbRkK1msA97ct3xSYCkyNiIcj4vzKsvvLNmbLBQdmM+ul2eXvNW3zXwj8sby+B5jZtnxf4DXAbZK+JWmtyrKZwJIep9OssRyYzayX1gUeiojHWzMkrQ3sSFbkArgC2KK6UUScGxGvBLYki63nVxbPBi6fwDSbNYoDs5n10p+A6ZLeKWllSVsAJwOnRcQVZZ0zyEANgKS9JW1emlfNBNYELivLpgPPB86exGMwq5UDs5n1TETcDuwDHAzcDfySfLY8v7LaCcDuklYu719G1tK+nwzaX4yIc8uyvYAFEXHbxKferBn05KaGZmYTS9IXgDsj4mujrHcBcGBEXDkpCTNrAAdmMzOzBnFRtpmZWYM4MJuZmTWIA7OZ1ULS6ZJOrzsdZk3jZ8xmVgtJARARGm1ds+WJ75jNzMwaxIHZzMysQRyYzczMGsSB2czMrEEcmM3MzBrEgdnMzKxBHJjNzMwaxIHZzMysQRyYzczMGsSB2czMrEEcmM3MzBrEgdnMzKxBHJjNzMwaxIHZzMysQRyYzczMGsSB2czMrEEcmM3MzBrEgdnMzKxBHJjNzMwaxIHZzCadpPXrToNZUzkwm1kd3lh3AsyayoHZzOqwT90JMGuqFepOgJktHyStCMwub2dV5m9TXt4YEfdOesLMGkYRUXcazGw5IGkK8Hdg42EW/xOYFRG3TmqizBrIRdlmNiki4p/AdzosPstB2Sw5MPeIpMMlfaCL9S6UNGcSkmRjJOl0SdGn0+l1f39dOqHD/OMnMxHLG+dP/cVF2V2QtCZwN/AAeTGzCDgsIr5Vlq8DXAZsFhEPjbKvfYA3RsTrJjTRNmaS+vrHEBGqOw3dkLQA2LEy615gvYh4uJ4U9T9JM4GPk5Xq1gUWA6cDnymrXIbzp77hO+buzAUWR8SqETGD/AEcI2ntsnw+cMZoJ33xM+DlbsfZXBGhfprq/r7Gob04+xQH5fGTtAbwP8BzgN0iYiawA7AisBHOn/qOA3N35gKXVN6fB0wF1izvdyvzniBpE0mnSVos6V5JZwOUDOhiYOcJT3UNJK0oaaakVSVNrTs91kg/BB6svD++pnQMiiPIEr3XR8TfACLiloh4V0RchPOnvuPmUt15Hnmytq5ODy/vry3Ltwb+0rbNCcDJwGvIK9fnV5ZdAzx34pI7eSRtDLweeAF5jJtVFi+VdDVwEXAh8IOIuGvSE2m1kiTgpcCu5DnyfGBGZZWzJV1K/qbOA06PiMcmPaF9SNKGwH7ADqVy3XCW2/ypXzkwd2cu8DpJBwEzgTOBXWPoAf0awP1t22xK3lVPLVeh51eW3Q/0bVFRyWh3Bg4C9gCqxakBPFTmrUxmClsDbwOOkHQK8J8RcQk20CStDBwAvJc8B6oeZ6jEblWy6HUH4APAbZL+H3B0RNwxOantWzsBiyLi9yOsswbLUf40CFyUPQpJ08lOEbaJiNXIu8MXAdUr+nvIgF21L3k1epukb0laq7JsJrBkwhI9gSStB/wY+CWwJ/k9nAy8gyxZmB4Rq5Rn8auSd0oHkxczK5HPuy6S9HVJq0z+EdhkkPRS4HLgKDIo3wl8FXgDsAkwLSKmRsRUsrLS7sCngT8DGwCHAn+WtF+5ELThrQvcNMo6y03+NDAiwtMIE1nE8w9KDfYy7wrg7ZX3vwL27bD908mi3A9V5p0NHFD3sY3ju9ibfJYVZE3ajwPrjGH7TcnnYY+VfVwLbFf3cVXSF/mTqD8t/Zpu8i7sy2SHIQFcSfaLPa1tvXnA8cNsr7LszNZxAT8H1qz72Jo4AW8BbgGmjLDOcpE/DdLkO+bRPQ+4MsoZW5wB7NX2/onmH5L2lrR5udKfSVYSu6wsm04G+7PL++MlHT+RB9ALko4gK+2sSWaaW0XE4RGxqNt9RMTfI+KDwAuBP5GB+reS3jERabbJVbrcvAg4hAzMnweeHxHfj4hHu9lHpAXk8+j55AXgnsDVkjYbYdPl1Wnl7xclrVYqX25d7oLXKcsGPn8aNA7Mo5tL3iFX/RJ4laSVyvsTgN3LMzWAl5GVWO4nfxRfjIhzy7K9gAURcVt5vyHLPt9pHElvJZ/9CbiAbJJx83j3FxGXks8TFwLTgKMkvagHSW0kST+QNFvSFElHSvpc3WnqNWV3m6eSvxeAT0XEJyPikfHsrwTo75ClNEuB9chKYmv0ILkDIyLuA14BbAH8DbgLOAW4o3LRPND50yByByM9IukLwJ0R8bVR1rsAODAirpQ0jXwOt000tBaqpC2BS8kA+jhZYfCbwEExzpNH0gzgp2TFlYfJZ8+3AnOixkEMWh2MRI/bBku6HHgxcCxwYUR8vcf7n5B0jzENBwNfBx5l6Fx5fUT8tG29C4DpZP2DtRh6PvrRiDizbd3ZwK/J56gPkjW5T4qIfSfwUAbSoOZPg8qB2TqStAJ5tfxC4DjgB8BPyIx1XMG5LSjfUf4eS1aoOy4iDuxV+sdqIgJcydz+RDZXOTUivturfVc+o9bAXIqYryBr4b+WrPB3CB2Cc9lmHjA/IuZ32Gc1KP8K+CBZWjMDeG1E/KTHh2HWGC7KtpEcRAblW8jKIb8E/gV4hGwC842x1JgdJii/PCKuJJtSPQK8XdIre3oE9ZsNrA3cNxFBuSGOIYPy90rA/AjwFbJ05YeSXjOWnQ0TlF9TzpOPtT6vdEFpNpAcmG1YpdeuD5W3B7WKmMcbnDsE5WvKPv9MVhSi8pmDYiuyJvrqknaqOzG9Jmlb8hnnvWSzOEopyriCc4eg3Ool7Eiyo5qnk819zAaSA7N1sgdZ8eNasrnKE8YanEcKyhVHlf3tJulZPTqGJtiKbDJ0IPDlSk3ZQfGe8vfbEXF3a+ZowTkiFrQXY48SlIns2eqI8va9bt9sg6pvA3Ppj/lvkvqi6zhJGyuH5+uX3tZaz3qPimG6+us2OHcZlImIxcD3yZrfb+vRMTTBHOCqiLgT+ATw7UEJKKWW71vK26Pbl4/lznm0oFzxI7Kzkq2B7Z7qMSxPnGf2j0YFZkk3SLqj2iOUpHcoh4lr90XgKxFx+aQlcMBI2k7Z13X7fAEvKW9/3Gn70YJzt0G54kfl70tGWOcpkbSppG0nKzhGxF4xNLDALyJiz/HWZq+LpF07PNN9LlkZ66qIaO+LGeguOI8hKFPaQ7dKcF48jsNptNKkbq/SJryb9Z1nDqBGBeZiBeD9I61QrtSvjIhjJidJT9RQHjR7AddLOlfS/pUf94ZkhaW7gRuqG0iaV+1woFNwHkdQhjJQCDCRgXOr8jmXS/qQpHUn6HMGyeHA7ZJOkPSK0mYZhgY+uKi68jDnSMfgPJagXNE6T54/4lr9SeTv5lZJX5W0TRfbOM8cME0MzF8GDhmuI4FW0QbwWEQcVeYtUOk5StJ8SedLOkLSEknXSXpJmX+zpDslHVDZ33RJX5F0U7nqPLqcwK3M5RZJH5V0O1kEOV3S1yTdVqavKXvKeRJJU8u+F0u6jnxmW12+urJ3noWSbpX0OdU3TOLLyTFyb5d0HEMVay7u5u5umOB8NGMPypBtme8keyKaNcZjGKutgX8nM8CfSdp7gj+v380gRzE6h7yYO4zsJAaGAmVHHYLz+xh7UK5+3tyxHECfWYdsIna5pEskHayh8d/bOc8cNJ366qxjIu/OdiKLND9X5r2D7IkGYGOy79wVKtssAN5RXs8n206+jeyz93NkBwZHkm1vdyZ7u1m1rP81cmDwtciu6X4OHF6WzSv7+r9l25WBw4A/kLVC1wF+B3y2w7G8m+yQf8Oy/19X0062Bz4GWKXs70LgXW37OJ2h/oLrmG4Z5rjmMUwfx2XZrmSHIa3tbwdmj/EcuK/mY45R0te4dNX9fQFvGMM5IjKQVLc/G5gxhnNkVgOOua7pMueZnfPMQZlqT0CHk2wrsvnFOuM4yf5WWbZ1WX/dyry7yCttAQ8Am1aWvRi4vnKSPQqsVFn+d2D3yvtdgBs6HMu5wLsr73dupZ28Q3gEWLmy/M3Ar9v2UXdgvrmSlgvI/nSvJYu4LyvTLpV1ZgCXVLY/icrgH12eA/fWfMxR4/m/OpnZ/IPsi7zb7Wr9voDXdXuOlPVmk7+9IPvUfsMYv6dnNOCY65qucZ7ZOc8clKmRzwAiu4M7jexQoJsi0Krq+K0Plf21z1uVPIFnABdXHmeKvGpsWRQ5VmnLBsCNlfc3lnnD2QC4uW3dlo3IwckXVj57Stv6RMQyRTm9IGkLstOQjYC3k0PwLfOxZE9V2wBPjPEaEduX7ecxTI9NlWfKzyOHmVuF/OHcI2ksPYQtBFYjA9NVYzi0jiStD2xP1pB+KbDbMKtdzCQ+s5S0ICLmtc1+kCy++/J49hm97bHsxcALyP/FcH173w8sIs+fGeXzRzxHyrLWM+UZ5G9iI+AkSY/GMD2EdTCj/L0+ItrP3wmnHve0pqzotQP5u5wGfGaY1RYCJ5I97j2J88zB0sRnzC2fBt5JXh23PFD+zqjMW2+c+19MnnBzImKNMq0eEatW1mkPJreRJ0jLrDJvOAvJIpnqui03k1d/a1c+e7WImDOuIxmDiPhrRHw3Ij5P3tG2/JVszjML+N9l3pbd7HOYil4vJcd6HWsnJCuRI079k7ZKZ09FRCyMiJ+UY65WfrmDfM68TUS8oJt9SdqyPKO7VdIfJZ2jthq0yhF+TpT0O0kXlAuDbtL5WIxhtK6JFBG/j4j/LN/ZZa3Z5DPm/YD1yXG4ofvzpL2i15aMr4ew1u/k712u32jl/35uRHyRoY52IO8+TyXHqp4VER+NiBuH3UlynjkgGhuYI+Jasl3rwZV5i8gKQm8tFQXeTmbk49n/P8k+mo+Q9HQASc+QtMsIm50MfFLSOqUixr8BnbpZPBU4WNIzJa3JUHeCRMRC4Czg35VDtU1RNuPZcTzH8hTcSwaqFwPPiRzG8Ray3+OlwGxVmmEMZ5ig/PKIuCbG10PYNmQmfU1EPDDKuuP1KPDfwKuBDSPikIj4U7cbR8TV5U73YmDniHhlPLmD/+3ILjhfAryo/L/72bXAp4BnRcRO5cLuAYZqY49a0jBMUH5NZEWv8fQQ1vq8USud9akLyI5b1ouIN0Y2s3t8tI2cZw6QusvSqxPleUnl/YZkZaIFlXm7AdcDS8i7nfNY9nnJbyvrbkbbM0Oy3+eXldcrAV8AriMrHV0DHBxDz0tuadt2JeA/yCu7heX1Sh2OZQWyl6K7SnrfR+VZD/k88aiSnnvJEZzeVPf/oJL+y0t6XzXCOjPIijtBh4peLFsh7EhGeOYMfLis952ajjnaz5cR1j2v8voFZMWUueX9dLLN6CnAHpX1ZpHP9xaU87f1elbbvo9nHM+Ya/i+NiyfvaTT76CsN7ucH8EwFb1YtkLYY2TQHulzF5R1x/Rsuo7zZBLScgPOM2v/P/T8/1p3Ajw1cyKfcwU5ItJwy0cNypV1Rw3OJXP+c1ln75qOuasMt2Qgv2qbN5+hwDyj/F2DSgBvW3/BCPs/nv4IzGKost9+HdYZMSi37WvU4Aw8u6zzILBGk88TT57GOzW2KNtqdyxZnP1aSctU1uhUfN1pR9FdsfYryEz3NrI5RpMtBWZI+kiH5cdJOp8sejt8LDuWdAZZG/VYSfOfUionWEQEQ5WR3te+fITi60776qZYu9U39/ciYslTOgCzpqr7ysBTcyfyWWyQAxS05nV9pzzM/oa9cyYz4j+W+Z+u8XjHdSdEFv+dRN7xrdYv6e7RZ69CFpEGpdlUmd/VnfIw++t45wxsTlY+CmDbfjtPPHnqdmpljGZPIunZ5LPm6cCe5N3PeHr0qu5zV/J57HTybusgspLHF8ial1tFxH09OoQx6XUzmMlSd7pLD17fIHttm0M2q+nqTrnD/gR8CTiE7LDi9cBp5LPRlwInRsT+vTyGsaj7+7bB58BsI5J0CHkHcztZO/dljDMoV/ZZDc4/IoP+NLIjirN6kOxx6dcMt+50K/vOPoes/HMe8BzGGZQr+2wPzj8E3kSeh3OiMsTkZKv7+7bB58BsIyp90Z4D7FhmLQJ2HCkolzuod5a3u0fEk9otluD8UzIgAxwZEQf1LOHj0K8ZbhPSLWkTsvnUmmXWOcBe4wnKlX1WgzNk+/ZXR8QZTyWtT1UTvm+beJJ+AZwSEd8ZZtnGZM3xFaOLpmxj5cpfNqKIWEpW3FpSZi0l74ZG2ubIiJhbpuGCssjiztY4z1cDH+hRkq0GEXEd8EaW7WBizQ6rd2tlsrlNy5fqDsq2/IiI3YYLypPBgdlGFVn7dROyA/r1gF9L+oak1ca6L0nPJGtdn0Bmut8lmxn1/KrTJldEnE2OpX0X8ErgKklv09AwkV0rHUdcQdZBWEp28fnxXqbX+oOWx+EjR6sdRvZf+t9kEeb1lMbkZdmhZG8tJ5B9514FvKAs+xjww7Z9fR34j/L6bWTj9PvJxurvqqy3NlnZYwnZGf7/AFO6SM8LyeK0+8jnoF8d4bj2JLsaXEIGnG0qy24gi8+uIBuyf5/OjeIPBb5beb8xyzaKn1+O7/6S3n3L/CnAJ8n+YO8s3+HqddcGHOVcmFaO97FyjPeRlX62YuSOQ6aQfQGfTPa81eqUYv5I29VwfH1Z27Zp6S6/0Z+30kV2nXkI2Z3iSNutTHb3+fvKtldQYw3spn/fo+SHh9KH+TOloxLgo2SdghNLHvKxci7dVY5rrco2LyPz8SVkJdL5Zf7q5fgXlbz2k5W0TiU7XFlc0noQy+bdCxjqiGUq2ZRvcfk+2js/2YC84bibrIvzzrEe9zLfwSj/9Clkt3f/RmbKm5RE7VL5xz9M9uU6lWyz+YeybCOyE4DVKge2kOyiELKz/k3J5hE7lnW3LcsOJ8f0XbFMO5T1RkvP7ykdHZCdrr+ow3FtSwbD7Uu6DiCD8fSy/AZylJ8NyOHHrqEy6knbvg6lQ2Amm5LcBzy7LFufrLgCOYDEteUYViUrQZ1Y9w+9y8xgLlnJJyrTHcAZZI9XnyB/AEeUk7s6YtRS8kf1jLqPY5jjakyG2+/pLr/X/cpvqXqe/JW8QPsM8PHyW/4vshenxyrrLSm/rWl1H0tTv+8u8sND6c/8eR5PHj7yA+Twkc8s844BTi7rzyIvIN5c0vM0hjr7OYGsyzKTzJv/ChxYlr2bfIz2TPKxy6/oHJhHG5LyPLKVyUpk/rgIeOVYjnuZ72CUf/z2wE1t8z5Oadda/vG/qizbEnio8v63wP7l9auAv4/wWT8B3l9eH1a+zM3GmJ7fkD/40a7Mj6JtTFDgL2SlJsjM5K2VZV8Cju6wr0MZOTAvAV5HZbiyst45wHsr759NZkwrjJT2Jk3kEHFHkVeJMcp0E/BZsn/q2tPe4XgakeEOUrrJDH9P8qLtkVHOkX+S7dkPBFapO+1N/74HOH+ex5OHj7yGEujK+/Vb+WX5jB93OPceAbaszHsXQ0NinsuyJQE70TkwjzQk5YbkDcfMyvLDKWOSd3vc1Wm0Zz8bARtIWtKayLuhauWf2yuvHwRWqjwTOIm8igF4C5XRjCTtJukPku4u+92dLCKBbJ5zLXCWpOsktTozHy09BwJbAH8uI//sOcJxfbhtPxuy7HBk7cdVHUGlK5Ed/b+RvNpaKOl0Sc8pi4cbDq017mhfiIg/RcR7yCvUTYF9yJOw5WRysIgNImJWRHwqIgZymDYbXkQsjYjTImJ38q5lW3L0ssPIO6LPkndDO5B3b9tFxLdi4gYxGSSDmj/Dk4eP3Aj4cWW/1zBUEXVDhh9pbG3yzr09n22NvtU+zORIedNIQ1JuANwdEfd3+JyxHDfAqOMx30yOebr5aDvq4AfkaCDPBF5LjmKEpOnkc4j9gZ9GxGOSfkIWh1AO8MNk8JxDVjb642jpiYi/AW8ulU32Jrv1e9owP/Kbgc9HDmn3VD3ACEOqRcSZwJmSVibHtT2WzISGGw7tcZYdG7UvRF4WXifpRuCrlUVrRMRpNSXLGiYiHiWLrC+tOy0DYlDzZ1i2dn/rWN8eEee3ryjpZvI5brvF5F31RmSRNWQ+e2t5vZAsxm6pDjnZbqQhKW8D1pI0sxKcn/icMR43MHqt7AuB+yR9VNLKZdiwrSRtN8p2lAQtIosDvk3+w1ptX6eRzwkWAY9L2o0sGgBA0p6SNivNau4jr4yWjpYeSW+VtE7k8GRLyu6WDpO0Y4F3S9peaRVJe0ia2c1xtbkM+F+SZklanSxWaR3HupL2Ug6d+Ajwj0p6TgY+KOlZklYle776fvR37eRXsOyJvova+tnuB5Kin6a6vy+rzaDmz8M5Gvi8pI3KvtbRUF/q3wN2krSPpBUkPU3S3MimnqeW7WaWbT/E0LCTpwLvVw5duQZZ2ayTkYakvJmseHa4pJUkbUPeJX9vvMc9YmAuB/Zq8mH29eQVyH+RNd26dRJZdv9EMUm5qjiYPNh7yGKU6sAFm5MP4v9BPjj/ZkQs6CI9u5JNNP5B1jB8U1txSOvzLyI7wPhG+fxryRrCYxbZROT7ZO3Ri8naii1TyCvL28jnsDuSgzgAHEfWNvxNOZaHgX8dTxoaZH7b+ynAW2tIx3j1cxvZfk67jcOg5s8dfL2k4SxJ95MVwbYv6b2JLGr/MJnPXgY8t2z3r2Sp5nXkM/WTyLwX8gbtLDLvvpT8DT1O55u5M8kuii8hK+tWvZmsX3Qb8GOyz/+zx3vc7vnLeqKUFtzOsh1CQD4LmhM+0WxAtEopwj1/DZRSMnB0RGw06soTzB2MWK/sw5ODMuQoQ10VrZmZTZZS3L57Kf5+BvBp8m63dg7M1itPI4u+fl+Zd2qZNq0lRWZmnYlsxnQPWZR9DdkGu3YuyraeKhUfLgcX9dlgclG2TTTfMVuvPVp3AszM+pkDs/Xa4roTYGbWz1yUbT3noj4bZD6/baL5jtnMzKxBHJjNzMwaxIHZzMysQRyYzczMGsSB2czMrEEcmM3MzBrEgdnMzKxBHJjNzMwaxIHZzMysQRyYzczMGmSFuhNg1hSSTgd2rzsd43RGROxRdyLM7KlzX9nWc/3al3Ar3f2q377vftWv57f1D98xm7Xptwy33y8ozGxZfsZsZmbWIA7MZmZmDeLAbGZm1iAOzGZmZg3iwGxmZtYgDsxmZmYN4sBsNsEk/UDSbElTJB0p6XN1p8nMmsuB2WzibQHcCJwI/DUiPllzesyswdzBiNkEkjQNWAk4BTg1Ir5bc5LMrOF8x2w2sWYDawP3OSibWTccmM0m1lbAEcDqknaqOzFm1nwOzGYTayvgSuBA4MuS1qk5PWbWcA7MZhNrDnBVRNwJfAL4tqS+GiTDzCaXh320nuvXYfEGMd2SpkXEo5OfqsHVr+eJ9Q/fMZsNmNJeep6k44Hf1J0eMxsbN5cyGxCSNgH2Bw4ANi6zr6otQWY2Li7Ktp7r16K+btLdWqcOndLVRZp+B9wC/CwivtfzhC1n+vX8tv7hwGw9V2fw6oW6MlxJqwNnA1sCL4qIK7vcrq+/737lwGwTxc+YbSIsqjsBTSdpwTCzHwT2AH44uamxcfA5bhPGz5it5yLi6XWnYTy6ufOUtCXwTWBz4DbgPmDXiHisss6KwHHApsBU4F8iYuFo+y77WPQUWlPtC8wHdgJaO7kqIrYa7w7NbPI5MJuNQURcDcyT9DPggIi4Z5jVtiO74HyJJMUkPS+KiJOAkyRtCOxHBmkz6zMuyjYbn9VbQVnSLpL+j6Rjy93yxcD9kk4Bdm9tIGmWpAWlGHtu67WkWb1MWETcHBFfAJ4N7NPLfZvZxPMds9kYSVoBeKLoOiLOBM6UdAQwLWfFxyStAfwUOL2sdxMwr+xjQUTMm8h0ljv1qyfyM8ys93zHbDZ2S4EZkj7SmiHpPcCZEfEAcJyk84GzgMPHsmNJZwA7A8dKmt+7JJtZv3BzKbNivO1TJb2brHD1W+A7HZ47Txi3qzUbLA7MZkW/Brh+TbeZDc9F2WZmZg3iwGxmZtYgDsxmZmYN4sBsZmbWIA7MZmZmDeLAbGZm1iAOzGZmZg3iwGxmZtYgDsxmZmYN4sBsZmbWIB5dyqxNq4tLM7M6+I7ZbMgZdSfgKejntJtZhQexMDMzaxDfMZuZmTWIA7OZmVmDODCbmZk1iAOzmZlZgzgwm5mZNYgDs5mZWYM4MJuZmTWIA7OZmVmD/H8Y5eW/vYtRbwAAAABJRU5ErkJggg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1.25\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R(s)$, \\nNúmero de\\nenvases en uso\", \"left\")\n",
"d += (sum := dsp.Mixer(W=\"+\", S=\"-\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(sum.E).right()\n",
"d += (proc := dsp.Box(h=hbox, w=wbox).label(r\"$\\frac{K}{\\tau_1s+1}$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(proc.E).right()\n",
"d += (sum1 := dsp.Mixer(W=\"+\", N=\"+\").anchor(\"W\"))\n",
"d.push()\n",
"d += dsp.Arrow().up().label(\"$U(s)$\", \"right\").at(sum1.N).reverse()\n",
"d.pop()\n",
"d += dsp.Line().right().at(sum1.E)\n",
"d += dsp.Dot(radius=0)\n",
"d.push()\n",
"d += dsp.Arrow().right().label(\"$C(s)$, \\nNúmero de\\nenvases recogidos\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox*1.5)\n",
"d += dsp.Arrow().left().length(3)\n",
"d += (medidor := dsp.Box(h=hbox, w=wbox).label(r\"$\\frac{K}{\\tau_2 s+1}$\", \"center\").anchor(\"E\"))\n",
"d += dsp.Line().at(medidor.W).left().tox(sum.S)\n",
"d += dsp.Arrow().up().to(sum.S)\n",
"\n",
"d.save(\"./img/prob708.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "f2bf5b9b",
"metadata": {},
"source": [
"El énfasis de la campaña de recolección viene dado por la ganancia $K$. La perturbación $U$ representa los envases que se rompen o se tiran a la basura o a otro lugar no controlado. Suponter $\\tau_1 = 1\\mathrm{ mes}$ y $\\tau_2 = 0.5\\mathrm{ mes}$. Determinar:\n",
"\n",
"1. La ganancia $K$ para que es sistema esté crítcamente amortiguado.\n",
"\n",
"2. El _offset_ para una entrada en escalón unidad en la consigna, suponiendo $U(s)=0$. ¿Cuán sería ese _oofset_ para la ganacia del apartado a)?\n",
"\n",
"3. El _offset_ para una pérdida de envases $M$ en escalón, suponiendo que no varía la consigna. ¿Este _offset_ será positivo o negativo?\n",
"\n",
"**Problema 7.9**\n",
"\n",
"El comportamiento dinámico de una compleja organización empresarial se puede considerar un sistema de control por retroalimentación. Un modelo sencillo de un sistema de gestión se presneta en la figura adjunta. La función de transferencia correspondiente a la actividad de gestión de la empresa es $G_c(s) = \\frac{k_1}{s}$. La función de transferencia correspondiente a las actividades de ingeniería y producción es $G_p(s) = \\frac{k_2}{\\tau_p s+1}$. La función de transferencia de la actividad de evaluación de los resultados, $C(s)$, de la empresa es $H(s) = k_4 + k_5 s$. El resultado de la evaluación, $B(s)$, se compara con los objetivos propuestos, $R(s)$, y la diferneica constituye la entrada al bloque de gestión, $G_c$, que dará lugar a la pertinente acción correctora. $D(s)$ representa las perturbaciones que actuan sobre el sistema."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d0f6d769",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAACgCAYAAADaUsEiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAW1UlEQVR4nO3de9wcVX3H8c+PAIGYQBIIiApGSNAQhISAF0QliqhRoQQEIRSiiGBBTWmlAvWC1kARrRUUUTEYFJSqtRgivkLCRRETQGIKeKtNChIRaLgkEO4//zhneSbz7H337Ow8z/f9eu3r2Z05M/ubeWbPby5nzpi7IyIiktJmRQcgIiJDn5KNiIgkp2QjIiLJKdmIiEhySjYiIpKcko2IiCSnZCMiIskp2YiISHJKNiIikpySjYiIJKdkIyIiySnZiPSAmZ1jZvOaKLfCzKb2ICSRnjJ1xCnSPjMbB6wDHouD1gErgE+5+x2xzARgJTDJ3Tc2mN+RwFHufniyoEUKoCMbkc5MA9a5+2h3Hw1MB34NLDezV8Qyc4HFjRJNdBUw08x2ShGsSFGUbEQ6M41w1AKAu/+/u38G+BVwQhz8duCGShkz29XMFpnZg2b2iJktyUz/BHAbcHAPYhfpmc2LDkCk5KaTSTYZvwVeHN+/EvhdZtxC4ArgUGALYEZu2t8Ae3c1SpGC6chGpDPTqJ5stgUeiO/HAusz43YDRgAj3P0Jd78pN+36OI3IkKFkI9ImMxsJTCFco8kOHwHsz8Cps4eAMZkicwhHNWvN7BIzG5+b9Rjg4RQxixRFyUakfXsCzxFOe2WdDDwF/Dh+XgXsXhnp7svc/c3AHoTTZXNz0w9KYCJlp2Qj0r7pwJ3u/jSAme1sZv8CnA28pzIcWAy8MZaZbWaTzcwIRzDjyJyGi0dLM4DnGw2IDAVqICDSvmnAXma2HngGuB+4FtjX3ddkyi0EVprZ1sABwIXANsC9wLnuvixT9hDgendfmz58kd7RTZ0iPWBm84H73f2LDcotB06o3BAqMlQo2YiISHK6ZiMiIskp2YiISHJKNiI9YGZXm9nVRcchUhRdsxHpATNzAHe3omMRKYKObEREJDklGxERSU7JRkREklOyERGR5JRsREQkOSUbERFJTslGRESSU7IREZHklGxERCQ5JRsREUlOyUZERJJTshERkeSUbEREJDklGxERSU7JRkREklOyERGR5JRsREQkOSUbERFJTslGRESSU7IR6SEz26noGESKoGQj0ltHFB2ASBGUbER66/CiAxApwuZFByAyVJnZWGCX3OBdzGyv+P4ud3+mt1GJFMPcvegYRIYkM9sFWANYldF/BCa7foAyTOg0mkgi7n43sLTG6EuVaGQ40ZHNMGZmVwOzio6jDYvd/R1FB9EMM5sDfDs32IGJMRn1tRJvI1Ci7WQ4ULIZxsystP98d692aqrvmNko4D5gTGbwUnc/qKCQWlLmbQTKs50MB2ogIKX6QZat8nP3x83se8D7M4O/VVQ87SrTNgLl206GA12z6ZCZjTSzbcxslJlpfUo1l2bebwB+WFAcIoXRkU2LzGw/4B3ADGBf4IWZ0RvNbCVwG/Az4L/c/cmeBymFMrMtgHcCbyBsI9Mzo0cDq83sVsJ2cg3wCzUWkKFO12yaYGZbAnOAvyNUHlnPAk8QEvfI3LgHgEuAr7j7PanjbFXlVEOZTpH0c8xm9kLgZOADQL5bmucyf/M7eauArwAL3X1j0iBb1M/ru56yxj2UKdk0YGb7EE6DvDIOWgd8B/gFYc/0j+7+XCy7HbAPISEdBewdp3kMOB34aqVsPyjjD7IfYzYzA44HvghsGwffBXwXuAX4lbvfnyn7MsKR8WuBY4EJcZrfA+9191/0LPgG+nF9N6OscQ9lSjY1xErh48AngBGEm/A+A1zZzN5nnP41wEeBw+Lg64Bj3P2+JEG3qIw/yH6L2czGA5cx0Dz4GuBc4MbsqTEzOxCY6+5zc9OPBGYTtrUphGbRnwPOdPdnE4ffUL+t72aVNe6hTBe0q4gX+m8Eziaso38H9nL3bzV7msODm919NvBuwim1mcAdZja9/tRSBma2O+EIZhbwMHAcMMvdb2j2Goy7P+nuVxCOiM8lJJvTgRXx2o/IkKBkkxOPSL4KHBAHfcHd57n74+3O092/T6iQngK2A64xsx07DlYKY2bjgCXAjsAzwGHuflm7F/rd/Ql3PwP4ZBy0D3CFWjjKUKHTaDlmdizhtMgzhAu5Tjj9sbCDeU4knEKbCDwOjCKcbplVZCukMp5q6JeY470zRzLw/7wPmOnuv82VW05oODIaGA9Ueg34J3f/aa7sYcCVhO3uaWAL4FR3/3LCRamrX9Z3q8oa91CmvaaM+GCrL8WPJwFnETpRvNTMjmtznhMZSDTLCc1gHwLeBry3s4ilCGZ2BCHRPAbsBywjNIG/zsxekS3r7q9292mEmzqvcvdp8VUv0ZwHHB1HnWdmu6ZcHpFeULLZ1JeAccBiYIG7z6eDhFMl0bzV3X8PfCgW+Tcz26E7oUsvmNk2hGbKAB9197uAd1En4TQxz3yi+Zi7/wD4HuGo6atdCl+kMEo2Udx7PBx4Ejipcnqr3YRTI9E8EkdfDvwU2IZNuzGR/ve3hKbKNwMXQ+iShjYTTo1EUzm1eiqwHnhL5hk4Q46ZnWNm85oot8LMpvYgJEnB3fUKv+1/JVyf+VaN8WfG8c8BxzWY10RgdSz/S2DbKmUOjuPvBkYUtMweNoGk33EOMK+JciuAqf0Qc53vNuDOGMMRVcaPIjxSwIE/A69oML/DCNdmPG5/VqXMBXH8Rf2+jQBbE1pw/ppwqvj/gP8AXlNnmgnAvcDWTcz/SOAH3Y5brx5tS12dWZcrlp6thHCEd3/cQF9dp1zDhNNMosl85x9iubcVtNylq0gKTjavjd+/FtiiRpmmEk4ziSaW2yOW2QCM7NdtBHgB8HNgEbBHHDaa0JvCJ+pM91Hg603GshXhpuqd+nk7KeOrF3V3K8GMy2z0j8fK5oTM+CR7KF1eoQcB46oM3z1TiVT90WfK1kw4zSaaTPnzYtmzEy7zq4FdaowrXUWSuhIhtAB7J7B5lXH/EL//4gbzqJtwmk00mfJ3xbL7JlzuWcDoDraRC4Cbqq23BtMtA47NDds1bmsPAo8ASzLjlgDHNzHfIZtsatVjDaYZA8wH/odwanY1cGGst3tSd7cS7EzggcznYwjNg7ePn5PsoXT5n7SU0I/ZdwmtwUbE4UfHjfOqXPkDCU9UzM9nUMKhxUQTpzkqll+UcJnPi3FeS+gaZVRmXE8rknqVSBzfsCJJXYkQEoUTmjKfD+yZGXd5HHdio+2EGgmHFhNNnOayWP6khMv9G8KO5ALgjcBmza5vQpPup4DXt/G9DwD75Yb9HDiF0HPHVsDrMuO+RLj3rdF8h3KyqVqP1Sk/FlhJ6G18chz2EsI1x33pUd3dygL+PfDTzOcXx39oJfgkeygJ/kmeea2NP/hvxM+fzJUfVIlkxmUTzmm0mGjiPCbFaf6UcJnPyy3zo3F5D+h1RVKvEonjG1YkqSsRBpJN9nUr4WL97+LnGc1sJwxOOKfSYqKJ85lH4us2hGSTXeb/Jdxg2sw2cgRwX27YCkKvChuBN9SZ9mkGH/n9GfgwsGWV8p8FvtnE8gz1ZFOtHptSo/wCQv28WY3xPam7W1nAhcD8+H5s/HwrAzeGdryHAlxd5Yfey9dJuXgOpEayiePPzE3fdKKJ048ueHl7WpFQpxKJ4xtWJEWvq/h6cbPbCZsmnMqr6UQT53F0l+JOtY2cSuhsND98Qpx+fJ1p72dwvfGmuM4eJPSaPj4zrqUjm2H4uju3HnYmnIF6bZ11leToMv9qpenzNOAjZvYo4QLxDoQL2x7HjyWcC8zaLQY7wkN3HDdlxq2P0/STSu/Ny+Nzab4BHGJmK+PrrbnylxPWRcUCH2je3IzCO1pswgsJe07Pc/dXAZMJG+EddaZ9iE0fhzwHOBRYa2aXxE4ss8YQkli/exaa2048NIv+GqEigHAj6ILM76bp7+tjdwM7m9mI3PBpwD3uvg7AzO4ws6vM7HYzOz2WWUW4Zvo8d1/m7m8mNI7YG5ibGT2F0EhFqhuV+3wQ4fLHzXWmGUsv6u4m96xGEvZSd4ufDydUCtum3kPp9EW4w/uDhHtlqu0JPM7A6ZGP5KY9kNp7rBMZOHV2d/zbsFl0bh7bxeke7vIyv5zQKeRZmdiyr2cJN642s9d6CGHPZ0Ru+FvI7EURrj/dSLi2c2Qcdi0wp8o8dyAcFZ+WG17INZu4fb8ZOIPQs3e17eRPhNMJXvkdNLmdZK/RrIl/GzaLzs1jbpzusi4v9+uAj9T5bVSWt9E2Mopw2u0CwmnXymMUrgB+HMuMJVyE3h7YElgZh58GfC0zr9mEHRkjVHh/BN6U+T+tA17UxLJ1fTtpYb2m2EabqccuY/Cp6Y8ByxvMuyd1d7MLOoNw8dAyw1YB78t8rlqxxHGDKpdmKpYEG0H2dMaNwPsIN1aeFoddnCtftRKhSmMAWrgPJzOfN8Rpbku4zNlrNncRehR+URzXrYpkGvATYnPgzN/nK5J6lUgc31RFkroSYdNrNhsJR68HE/byrovD39XkdpJvDNDSfTiZ+XwuTvOphMtduWbzHOGG46MJzd2bWt/xf/qfhIrrQcIF6c8SW0ICrwfOz5RfGv9uT0jkW8fPXyAcSW8g7ASemJnm3cAPm1yeIZVscvOvWo/VKHtMXL9Vr9fEMj2pu5tduPcDv8wNOxf4UeZzkj2ULv+TFhD2XCflhlcq/VtzwwdVItRpdUaLCYfQ6MKz6y3BMp9B6F7lVeSuE3SxIvln4C1Vpnu+IqlXicSyTVUkPfghjyI8GO8DwNjcuKqVfo3tpGqrM9pIOIQLuIOSXJeX+0dxW3lJivVNeMrtBfH9McBZmXHzae4ej+VkWgcWuZ0U+d216rEaZbeJv8Hz4vstCA+CvASYEMv0pO5uduEuzFeI8Qf2GLBV/JxkD6VHG8cYQoJ4Kl/B5MpNpHHPAK30NPDDWDZZk9YG39+tiuTzhO54INc8utsVScGVyHvi9y9tUK5u82ZaSDiERP1oLNvTnbMubyMXEU6/LCU86TbpDapDOdm0Ec/uhJ2Jv8Rt6U5iY684vid1d7cXqut7KD38h1xLles2mfENE02mbDM9DewUK6RnyO1N9nCZu1WRTInr5Abgc2WIuc3vHk84tebU2KtslGgy5ZrtaWBuLLOi5NvIEuqcyunXuMv23R3EnLzuLnwh++VFOHT0mMnze6JNJ5rMNHUTDuFx004BPSlkYijjj6LQmIFvxhg+X2Vcqz0DNOppwIBb4vi5ZV7fwA1ljLts393Pr8ID6JcXodfdP8UNJXvY2HKiyUxbNeEQboh9OI47qMBlLt2PouiYCXdcO+EU8m6Z4S33DBCnq5lwCF2DOOEcecOuRIbi+i5j3GVdZ8nXS9EB9NOLgZvnHgV26STRZOa5ScKJe6uL4rBFzVZKiZa3dD+KfoiZgW5rbiB0qNpWosnMb1DCIbQCeiAOO3k4r++yxV3WdZb6pcdCZ5iZES7a/w3hLvkdgZcy+Hk0rc73TELrLSdcHD2WcA/DVHe/t/PI21PGR+f2Q8xmth3hIuuOhCbg76b682hameco4MeE+xvuA35PaCW5lNDSr5Afaj+s73YUGXdZ11lqSjY5ZrYjcDvhAj6EpHNwrURjZqcAJ8aPs9x9bY1ylYRTMcfdL+9O1O0p44+iX2I2s3cCVxGOVKGDRJOZ5yjC0e7MOGgdoR+2NR2E2pF+Wd+tUrLpP3pSZ467/4XQxfxzlUGEO/1rlf+yDzxXvlaiGUnoB63ikqITjXTG3RcReoWu2IrQTLkT2e57nPCAtjUdzlOkLyjZVOHuvyLcFb+W8DyY/zazU81s81bnZWb7Ee7APYNQgcxzdz0Keghw99OBEwjd/3wYWGlmr291PmY2wsxOIJyam0m4cfY17n5dN+MVKZJOo9VhZtsTuml5Txx0D+EZEN909z/XmW5LQoeTpxCeDQLhoUXvdfefp4u4NWU83O/HmM1sX+BSYGocdDOh14bvu/sTdaabQLiP5oOELoAgnJo7ud721Uv9uL6bodNo/UfJpglmNpvQPc/kzODVwG2EPqU2ErqBeBGhH7m9CJ0NQmgiexHhWTmP9yrmZpTxR9GvMcdTpWcRjnC2jYOfJvSKfRthR+Vpwum2lxO2k0mZWawBPg58p6jGANX06/puRMmm/yjZNMnMNiP0DHwK8FZCpVHPKkLX8pe5+6OJw2tLGX8U/R6zmb2A0PfXBwgJpV6cTxJam30FuMbd++5RAv2+vmtRsuk/SjZtiNdu9iBUJp8kNI8G+DShZ+Db220m3Utl/FGUKWYzG0O49rcPoZHJloQEcw/hOt6d7v50YQE2oUzrO0vJpv+0fMFbwN2fAVaZ2QYGEg3AU+5+fTFRSb9x9/XAz+JLZFhTsunMcbnPc81sfj+dc29GZU9MpBZtI9IpNX1uU7yGc3xu8CRg/wLCadfiogNoU1njLqMyr+syxz7k6JpNm8zsQML1mbxvuPuJVYaLyDCgazbV6cimfXNrDD8qdjsiIiKRkk0b4im0Z4Erc6OuBH5C6LVXREQinUbrkJl9G5gDOmwWEZ1Gq0VHNp1bXXQAIiL9Tsmmc0uKDkBEpN/pNFoX6LBZRCpUH1SnIxsREUlOyUZERJJTshERkeSUbEREJDklGxERSU7JRkREklOyERGR5JRsREQkOSUbERFJTslGRESS02OhRSIzuxqYVXQcbVrs7u8oOgiRWtQ3WheoL6ShofJ/LCttf/1B9UF1OrIRySlbJVH2JCnDg67ZiIhIcko2IiKSnJKNiIgkp2QjIiLJKdmIiEhySjYiIpKcko2IiCSnZCMiIskp2YiISHJKNiIikpySjYiIJKdkIyIiySnZiPSImZ1jZvMalFlhZlN7FJJIzyjZiHTIzMaZmZvZy3LDLzCzr8f3E4DjgIsbzO584NNdjm/Lbs5PpB1KNiKdmwZsANbkhu8JrIzv5xIecLaxwbyuAmaa2U6dBGRm25rZiWZ2E/ChTuYl0g1KNiKdmwbc5YOfRDgVuD2+fztwQ2WEme1qZovM7EEze8TMlgC4+xPAbcDBrQZhZiPM7CAz+w5wH/A1YP+Wl0YkAT08TaRz04E7sgPMbEdge2BVHPRK4HeZIguBK4BDgS2AGZlxvwH2biOO1cDOVYafb2azgeuBH7n7LW3MW6QjSjZdpCcmDlvTgElmdmhm2AjgD+6+IX4eC6zPjN8tlhkRj2ZuyoxbD7RzGq1aoqnYP77ONCvVg0hliNBptO54oOgApBhmNhKYAswhJJ3K6yIGrtcAPASMyXyeQziqWWtml5jZ+My4McDDiUKW3lCdkKMjmy5w9x2KjkE61+aR6Z6EnbYlmaMYzGwy4dpLxSpgd+AWAHdfBiwzsx2AxYQGBF+IZacA324jll0JLd6OB7It4/7R3T/fxvxEukZHNiKdmU5oHLAhN3w/Nj2yWQy8EcDMZpvZZAvns8YA4ypl45HSDGBJq4G4+2p3PxuYFL9rAfBYq/MRSUFHNiKdmUY8WqmI99S8lE2TzUJgpZltDRwAXAhsA9wLnBuPdAAOAa5397XtBuTuzwE3Ajea2YeB7dqdl0i32ODWmiLDU+U0mrsnuYJuZvOB+939i3XKLAdOcPc7apWpMk3SuEW6QclGJCprpV3WuGV40TUbERFJTslGRESSU7IREZHklGxERCQ5JRsREUlOyUZERJJTshERkeSUbEREJDklGxERSU7JRkREklOyERGR5JRsREQkOT1iQCRHj/cW6T4d2YgMWFx0AB0oc+wyDOgRAyIikpyObEREJDklGxERSU7JRkREklOyERGR5JRsREQkOSUbERFJTslGRESSU7IREZHk/gq+vCgCg8eRJAAAAABJRU5ErkJggg==\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hbox = 1.25\n",
"wbox = 1.5\n",
"\n",
"d = schemdraw.Drawing(unit=1, fontsize=12)\n",
"\n",
"d += dsp.Arrow().label(\"$R(s)$\", \"left\")\n",
"d += (sum := dsp.Mixer(W=\"+\", S=\"-\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(sum.E).right()\n",
"d += (control := dsp.Box(h=hbox, w=wbox).label(\"$G_c(s)$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Arrow().at(control.E).right()\n",
"d += (sum1 := dsp.Mixer(W=\"+\", N=\"+\").anchor(\"W\"))\n",
"d.push()\n",
"d += dsp.Arrow().up().label(\"$D(s)$\", \"right\").at(sum1.N).reverse()\n",
"d.pop()\n",
"d += dsp.Arrow().right().at(sum1.E)\n",
"d += (proc := dsp.Box(w=wbox, h=hbox).label(\"$G_p(s)$\", \"center\").anchor(\"W\"))\n",
"d += dsp.Line().right().at(proc.E)\n",
"d += dsp.Dot(radius=0)\n",
"d.push()\n",
"d += dsp.Arrow().right().label(\"$C(s)$\", \"right\")\n",
"d.pop()\n",
"d += dsp.Line().down().length(hbox*1.5)\n",
"d += dsp.Arrow().left().length(3.25)\n",
"d += (medidor := dsp.Box(h=hbox, w=wbox).label(\"$H(s)$\", \"center\").anchor(\"E\"))\n",
"d += dsp.Line().at(medidor.W).left().tox(sum.S)\n",
"d += dsp.Arrow().up().to(sum.S)\n",
"\n",
"d.save(\"./img/prob709.svg\")\n",
"d.draw()"
]
},
{
"cell_type": "markdown",
"id": "25e5ca3f",
"metadata": {},
"source": [
"1. ¿Cuál es la función (en el espacio $s$) que relaciona la salida $C(s)$ con la consigna $R(s)$ y la carga $D(s)$?\n",
"\n",
"2. Calcular el _offset_ si se produce en la consigna una variación de una unidad en forma de escalón.\n",
"\n",
"3. Calcular el _overshoot_ de la respuesta en tiempo real a la variación anterior.\n",
"\n",
"4. ¿Qué sencilla modificación realizaría para mejorar la dinámica de este sistema de control?\n",
"\n",
"Datos:\n",
"\n",
"- $k_1 k_2 = 0.1$\n",
"- $\\tau_p = 10\\mathrm{ meses}$\n",
"- $k_4 = 5$\n",
"- $k_5 = 7.6$\n",
"\n",
"**Problema 7.10**\n",
"\n",
"Considerar una lazo cerrado con las funciones de transferencia siguientes:\n",
"\n",
"$$\\begin{aligned}\n",
" G_c &= 5 \\\\\n",
" G_f &= 1 \\\\\n",
" G_p &= \\frac{2}{(s+1)(3s+1)} \\\\\n",
" G_d &= \\frac{1}{(s+1)(3s+1)} \\\\\n",
" G_m &= 1\n",
"\\end{aligned}$$\n",
"\n",
"Para un cambio en el _set point_ de magnitud 2, contestar a las siguientes preguntas:\n",
"\n",
"1. Derivar una expresión en el dominio de Laplace para la respuesta de lazo cerrado.\n",
"\n",
"2. Obtener la respuesta del lazo cerrado en tiempo real.\n",
"\n",
"3. Calcular el valor máximo de $y(t)$ y establecer cuando ocurre.\n",
"\n",
"4. Calcular el _offset_.\n",
"\n",
"5. Calcular el periodo de oscilación de la respuesta de lazo cerrado.\n",
"\n",
"6. Dibujar cualitativamente la respuesta en tiempo real.\n",
"\n",
"\n",
"**Problema 7.11**\n",
"\n",
"Repetir el problema anterior para un cambio en las perturbaciones de magnitud 1.5.\n",
"\n",
"\n",
"**Problema 7.12**\n",
" \n",
"\n",
"Sea un lazo de control por retroalimentación de un proceso de primer orden de ganancia 5 y constante de tiempo 2. Se selecciona un controlador proporcional de ganancia unidad. La función de transferencia del medidor es de primer orden con ganancia $K_m$ y constante de tiempo $\\tau_m$. Asumiendo que la función de transferencia del elemento final de control es igual a la unidad:\n",
"\n",
"1. Examinar el efecto de $K_m$ sobre la respuesta de lazo cerrado (p.ej., para $\\tau_m = 1$ evaluar la constante de tiempo y coeficiente de amortiguamiento de la respuesta de lazo cerrado para varios valores de $K_m$).\n",
"\n",
"2. Evaluar el efecto de $\\tau_m$ sobre la respuesta de lazo cerrado.\n",
"\n",
"3. Dibujar cualitativamente las respuestas de lazo cerrado en función de varios valores de $K_m$ y $\\tau_m$. Discutir el efecto del medidor en la respuesta de lazo cerrado en función de estas gráficas (p.ej., discutir el efecto sobre el *overshoot*, la razón de disminución y el periodo de oscilación).\n",
"\n",
"**Problema 7.13**\n",
"\n",
"Considerar un sencillo sistema de control de nivel de un tanque de almacenamiento. Se puede tomar como variable manipulable tanto el caudal de la entrada $F_i$ como el caudal de salida $F_o$. Inicialmente el sistema se encuentra en estado estacionario con $F_i = F_o = 3 \\text{ m}^3 / \\mathrm{min}$ y un nivel de líquido de 60 cm. El área de la sección del depósito es de $2 \\text{ m}^2$. Responder:\n",
"\n",
"1. Encontrar la respuesta de lazo cerrado a un incremento en escalón unidad en el punto de consigna cuando se utiliza $F_i$ como variable manipulable.\n",
"\n",
"2. Repetir a) pero utilizando $F_o$ como variable manipulable.\n",
"\n",
"3. Dibujar las dos respuestas y explicar las diferencias, si las hay, entre tomar $F_i$ y $F_o$ como variables manipulables.\n",
"\n",
"Tomar un controlador proporcional de ganancia 10 y que las funciones de transferencia de la válvula y del medidor son iguales a la unidad.\n",
"\n",
"**Problema 7.14**\n",
" \n",
"\n",
"Repetir el problema anterior con las siguientes modificaciones:\n",
"\n",
"1. La función de transferencia de la válvula de entrada es $G_{f, i} (s) = 1$ y la de la válvula de salida es $G_{f, 0} (s) = \\frac{10}{3 s + 1}$.\n",
"\n",
"2. La ganancia proporcional es igual a 10."
]
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}